TY - GEN
T1 - A computational approach to understand Arabidopsis thaliana and soybean resistance to Fusarium solani (Fsg)
AU - Yuan, Jiazheng
AU - Zhu, Mengxia
AU - Iqbal, M. Javed
AU - Yang, Jack Y.
AU - Lightfoot, David A.
PY - 2007
Y1 - 2007
N2 - In this study, we reported the analysis of Arabidopsis thaliana microarray gene expression profile of root tissues after the plant was challenged with fungal pathogen Fusarium solani f. sp. glycines (Fsg). Our microarray analysis showed that the infection caused 130 transcript abundances (TAs) to increase by more than 2 fold and 32 out of 130 TAs were increased by more than 3 fold in the root tissues. However, only nineteen ESTs were observed with a decrease in TAs by more than 2 fold and 13 of them went down more than 3 fold due to the pathogen infection. In addition, the number of the up-regulated genes was nearly seven times more than that of down-regulated genes. The coordinate regulation of adjacent genes was detected and the distance distribution of the nearest neighbor genes was less likely to be randomly scattered in genome. The results of this study enabled us to decipher the resistance mechanism to Fsg through an integrated computational approach.
AB - In this study, we reported the analysis of Arabidopsis thaliana microarray gene expression profile of root tissues after the plant was challenged with fungal pathogen Fusarium solani f. sp. glycines (Fsg). Our microarray analysis showed that the infection caused 130 transcript abundances (TAs) to increase by more than 2 fold and 32 out of 130 TAs were increased by more than 3 fold in the root tissues. However, only nineteen ESTs were observed with a decrease in TAs by more than 2 fold and 13 of them went down more than 3 fold due to the pathogen infection. In addition, the number of the up-regulated genes was nearly seven times more than that of down-regulated genes. The coordinate regulation of adjacent genes was detected and the distance distribution of the nearest neighbor genes was less likely to be randomly scattered in genome. The results of this study enabled us to decipher the resistance mechanism to Fsg through an integrated computational approach.
UR - http://www.scopus.com/inward/record.url?scp=47649117313&partnerID=8YFLogxK
U2 - 10.1109/BIBE.2007.4375620
DO - 10.1109/BIBE.2007.4375620
M3 - Conference contribution
AN - SCOPUS:47649117313
SN - 1424415098
SN - 9781424415090
T3 - Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE
SP - 585
EP - 592
BT - Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE
T2 - 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE
Y2 - 14 January 2007 through 17 January 2007
ER -