### Abstract

The discrete Fourier transform (DFT) is used for determining the coefficients of a transfer function for n-order singular linear systems, Ex ^{(n)} = Σ_{i=1} ^{n} A_{i}x ^{(n+1)} + Bu, where E may be singular. The algorithm is straight forward and easily can be implemented. Three step-by-step examples illustrating the application of the algorithm are presented.

Original language | English |
---|---|

Pages (from-to) | 421-430 |

Number of pages | 10 |

Journal | Informatica |

Volume | 14 |

Issue number | 4 |

State | Published - 1 Jan 2003 |

### Fingerprint

### Keywords

- Fourier transform
- Generalized systems
- n-order singular systems
- State space
- Transfer function

### Cite this

*Informatica*,

*14*(4), 421-430.

}

*Informatica*, vol. 14, no. 4, pp. 421-430.

**A DFT-Based Algorithm for n-Order Singular State Space Systems.** / Antoniou, George.

Research output: Contribution to journal › Article › Research › peer-review

TY - JOUR

T1 - A DFT-Based Algorithm for n-Order Singular State Space Systems

AU - Antoniou, George

PY - 2003/1/1

Y1 - 2003/1/1

N2 - The discrete Fourier transform (DFT) is used for determining the coefficients of a transfer function for n-order singular linear systems, Ex (n) = Σi=1 n Aix (n+1) + Bu, where E may be singular. The algorithm is straight forward and easily can be implemented. Three step-by-step examples illustrating the application of the algorithm are presented.

AB - The discrete Fourier transform (DFT) is used for determining the coefficients of a transfer function for n-order singular linear systems, Ex (n) = Σi=1 n Aix (n+1) + Bu, where E may be singular. The algorithm is straight forward and easily can be implemented. Three step-by-step examples illustrating the application of the algorithm are presented.

KW - Fourier transform

KW - Generalized systems

KW - n-order singular systems

KW - State space

KW - Transfer function

UR - http://www.scopus.com/inward/record.url?scp=0742323873&partnerID=8YFLogxK

M3 - Article

VL - 14

SP - 421

EP - 430

JO - Informatica

JF - Informatica

SN - 0868-4952

IS - 4

ER -