A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes

Robert Meredith, Michael Westerman, Mark S. Springer

Research output: Contribution to journalArticleResearchpeer-review

66 Citations (Scopus)

Abstract

Even though the marsupial order Diprotodontia is one of the most heavily studied groups of Australasian marsupials, phylogenetic relationships within this group remain contentious. The more than 125 living species of Diprotodontia can be divided into two main groups: Vombatiformes (wombats and koalas) and Phalangerida. Phalangerida is composed of the kangaroos (Macropodidae, Potoroidae, and Hypsiprymnodontidae) and possums (Phalangeridae, Burramyidae, Petauridae, Pseudocheiridae, Tarsipedidae, and Acrobatidae). Much of the debate has focused on relationships among the families of possums and whether possums are monophyletic or paraphyletic. A limitation of previous investigations is that no study to date has investigated diprotodontian relationships using all genera. Here, we examine diprotodontian interrelationships using a nuclear multigene molecular data set representing all recognized extant diprotodontian genera. Maximum parsimony, maximum likelihood, and Bayesian methods were used to analyze sequence data obtained from protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF. We also applied a Bayesian relaxed molecular clock method to estimate times of divergence. Diprotodontia was rooted between Vombatiformes and Phalangerida. Within Phalangerida, the model-based methods strongly support possum paraphyly with Phalangeroidea (Burramyidae + Phalangeridae) grouping with the kangaroos (Macropodiformes) to the exclusion of Petauroidea (Tarsipedidae, Acrobatidae, Pseudocheiridae, and Petauridae). Within Petauroidea, Tarsipedidae grouped with both Petauridae and Pseudocheiridae to the exclusion of Acrobatidae. Our analyses also suggest that the diprotodontian genera Pseudochirops and Strigocuscus are paraphyletic and diphyletic, respectively, as currently recognized. Dating analyses suggest Diprotodontia diverged from other australidelphians in the late Paleocene to early Eocene with all interfamilial divergences occurring prior to the early Miocene except for the split between the Potoroidae and Macropodidae, which occurred sometime in the mid-Miocene. Ancestral state reconstructions using a Bayesian method suggest that the patagium evolved independently in the Acrobatidae, Petauridae, and Pseudocheiridae. Ancestral state reconstructions of ecological venue suggest that the ancestor of Diprotodontia was arboreal. Within Diprotodontia, the common ancestor of Macropodidae was reconstructed as terrestrial, suggesting that tree kangaroos (Dendrolagus) are secondarily arboreal.

Original languageEnglish
Pages (from-to)554-571
Number of pages18
JournalMolecular Phylogenetics and Evolution
Volume51
Issue number3
DOIs
StatePublished - 1 Jun 2009

Fingerprint

Phalangeridae
Macropodidae
Marsupialia
Phylogeny
Metatheria
phylogeny
gene
marsupial
Potoroidae
Genes
Bayes Theorem
genes
divergence
Miocene
Bayesian theory
ancestry
common ancestry
Phascolarctidae
Paleocene
paraphyly

Keywords

  • Ancestral state reconstructions
  • Diprotodontia
  • Fossil
  • Marsupial
  • Phylogeny
  • Relaxed molecular clock

Cite this

@article{79f98ecbfa694999b0bee58d70fb22f3,
title = "A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes",
abstract = "Even though the marsupial order Diprotodontia is one of the most heavily studied groups of Australasian marsupials, phylogenetic relationships within this group remain contentious. The more than 125 living species of Diprotodontia can be divided into two main groups: Vombatiformes (wombats and koalas) and Phalangerida. Phalangerida is composed of the kangaroos (Macropodidae, Potoroidae, and Hypsiprymnodontidae) and possums (Phalangeridae, Burramyidae, Petauridae, Pseudocheiridae, Tarsipedidae, and Acrobatidae). Much of the debate has focused on relationships among the families of possums and whether possums are monophyletic or paraphyletic. A limitation of previous investigations is that no study to date has investigated diprotodontian relationships using all genera. Here, we examine diprotodontian interrelationships using a nuclear multigene molecular data set representing all recognized extant diprotodontian genera. Maximum parsimony, maximum likelihood, and Bayesian methods were used to analyze sequence data obtained from protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF. We also applied a Bayesian relaxed molecular clock method to estimate times of divergence. Diprotodontia was rooted between Vombatiformes and Phalangerida. Within Phalangerida, the model-based methods strongly support possum paraphyly with Phalangeroidea (Burramyidae + Phalangeridae) grouping with the kangaroos (Macropodiformes) to the exclusion of Petauroidea (Tarsipedidae, Acrobatidae, Pseudocheiridae, and Petauridae). Within Petauroidea, Tarsipedidae grouped with both Petauridae and Pseudocheiridae to the exclusion of Acrobatidae. Our analyses also suggest that the diprotodontian genera Pseudochirops and Strigocuscus are paraphyletic and diphyletic, respectively, as currently recognized. Dating analyses suggest Diprotodontia diverged from other australidelphians in the late Paleocene to early Eocene with all interfamilial divergences occurring prior to the early Miocene except for the split between the Potoroidae and Macropodidae, which occurred sometime in the mid-Miocene. Ancestral state reconstructions using a Bayesian method suggest that the patagium evolved independently in the Acrobatidae, Petauridae, and Pseudocheiridae. Ancestral state reconstructions of ecological venue suggest that the ancestor of Diprotodontia was arboreal. Within Diprotodontia, the common ancestor of Macropodidae was reconstructed as terrestrial, suggesting that tree kangaroos (Dendrolagus) are secondarily arboreal.",
keywords = "Ancestral state reconstructions, Diprotodontia, Fossil, Marsupial, Phylogeny, Relaxed molecular clock",
author = "Robert Meredith and Michael Westerman and Springer, {Mark S.}",
year = "2009",
month = "6",
day = "1",
doi = "10.1016/j.ympev.2009.02.009",
language = "English",
volume = "51",
pages = "554--571",
journal = "Molecular Phylogenetics and Evolution",
issn = "1055-7903",
publisher = "Academic Press Inc.",
number = "3",

}

A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. / Meredith, Robert; Westerman, Michael; Springer, Mark S.

In: Molecular Phylogenetics and Evolution, Vol. 51, No. 3, 01.06.2009, p. 554-571.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes

AU - Meredith, Robert

AU - Westerman, Michael

AU - Springer, Mark S.

PY - 2009/6/1

Y1 - 2009/6/1

N2 - Even though the marsupial order Diprotodontia is one of the most heavily studied groups of Australasian marsupials, phylogenetic relationships within this group remain contentious. The more than 125 living species of Diprotodontia can be divided into two main groups: Vombatiformes (wombats and koalas) and Phalangerida. Phalangerida is composed of the kangaroos (Macropodidae, Potoroidae, and Hypsiprymnodontidae) and possums (Phalangeridae, Burramyidae, Petauridae, Pseudocheiridae, Tarsipedidae, and Acrobatidae). Much of the debate has focused on relationships among the families of possums and whether possums are monophyletic or paraphyletic. A limitation of previous investigations is that no study to date has investigated diprotodontian relationships using all genera. Here, we examine diprotodontian interrelationships using a nuclear multigene molecular data set representing all recognized extant diprotodontian genera. Maximum parsimony, maximum likelihood, and Bayesian methods were used to analyze sequence data obtained from protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF. We also applied a Bayesian relaxed molecular clock method to estimate times of divergence. Diprotodontia was rooted between Vombatiformes and Phalangerida. Within Phalangerida, the model-based methods strongly support possum paraphyly with Phalangeroidea (Burramyidae + Phalangeridae) grouping with the kangaroos (Macropodiformes) to the exclusion of Petauroidea (Tarsipedidae, Acrobatidae, Pseudocheiridae, and Petauridae). Within Petauroidea, Tarsipedidae grouped with both Petauridae and Pseudocheiridae to the exclusion of Acrobatidae. Our analyses also suggest that the diprotodontian genera Pseudochirops and Strigocuscus are paraphyletic and diphyletic, respectively, as currently recognized. Dating analyses suggest Diprotodontia diverged from other australidelphians in the late Paleocene to early Eocene with all interfamilial divergences occurring prior to the early Miocene except for the split between the Potoroidae and Macropodidae, which occurred sometime in the mid-Miocene. Ancestral state reconstructions using a Bayesian method suggest that the patagium evolved independently in the Acrobatidae, Petauridae, and Pseudocheiridae. Ancestral state reconstructions of ecological venue suggest that the ancestor of Diprotodontia was arboreal. Within Diprotodontia, the common ancestor of Macropodidae was reconstructed as terrestrial, suggesting that tree kangaroos (Dendrolagus) are secondarily arboreal.

AB - Even though the marsupial order Diprotodontia is one of the most heavily studied groups of Australasian marsupials, phylogenetic relationships within this group remain contentious. The more than 125 living species of Diprotodontia can be divided into two main groups: Vombatiformes (wombats and koalas) and Phalangerida. Phalangerida is composed of the kangaroos (Macropodidae, Potoroidae, and Hypsiprymnodontidae) and possums (Phalangeridae, Burramyidae, Petauridae, Pseudocheiridae, Tarsipedidae, and Acrobatidae). Much of the debate has focused on relationships among the families of possums and whether possums are monophyletic or paraphyletic. A limitation of previous investigations is that no study to date has investigated diprotodontian relationships using all genera. Here, we examine diprotodontian interrelationships using a nuclear multigene molecular data set representing all recognized extant diprotodontian genera. Maximum parsimony, maximum likelihood, and Bayesian methods were used to analyze sequence data obtained from protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF. We also applied a Bayesian relaxed molecular clock method to estimate times of divergence. Diprotodontia was rooted between Vombatiformes and Phalangerida. Within Phalangerida, the model-based methods strongly support possum paraphyly with Phalangeroidea (Burramyidae + Phalangeridae) grouping with the kangaroos (Macropodiformes) to the exclusion of Petauroidea (Tarsipedidae, Acrobatidae, Pseudocheiridae, and Petauridae). Within Petauroidea, Tarsipedidae grouped with both Petauridae and Pseudocheiridae to the exclusion of Acrobatidae. Our analyses also suggest that the diprotodontian genera Pseudochirops and Strigocuscus are paraphyletic and diphyletic, respectively, as currently recognized. Dating analyses suggest Diprotodontia diverged from other australidelphians in the late Paleocene to early Eocene with all interfamilial divergences occurring prior to the early Miocene except for the split between the Potoroidae and Macropodidae, which occurred sometime in the mid-Miocene. Ancestral state reconstructions using a Bayesian method suggest that the patagium evolved independently in the Acrobatidae, Petauridae, and Pseudocheiridae. Ancestral state reconstructions of ecological venue suggest that the ancestor of Diprotodontia was arboreal. Within Diprotodontia, the common ancestor of Macropodidae was reconstructed as terrestrial, suggesting that tree kangaroos (Dendrolagus) are secondarily arboreal.

KW - Ancestral state reconstructions

KW - Diprotodontia

KW - Fossil

KW - Marsupial

KW - Phylogeny

KW - Relaxed molecular clock

UR - http://www.scopus.com/inward/record.url?scp=67349149598&partnerID=8YFLogxK

U2 - 10.1016/j.ympev.2009.02.009

DO - 10.1016/j.ympev.2009.02.009

M3 - Article

VL - 51

SP - 554

EP - 571

JO - Molecular Phylogenetics and Evolution

JF - Molecular Phylogenetics and Evolution

SN - 1055-7903

IS - 3

ER -