Advanced LIGO detector performance in the fourth observing run

E. Capote, W. Jia, N. Aritomi, M. Nakano, V. Xu, R. Abbott, I. Abouelfettouh, R. X. Adhikari, A. Ananyeva, S. Appert, S. K. Apple, K. Arai, S. M. Aston, M. Ball, S. W. Ballmer, D. Barker, L. Barsotti, B. K. Berger, J. Betzwieser, D. BhattacharjeeG. Billingsley, S. Biscans, C. D. Blair, N. Bode, E. Bonilla, V. Bossilkov, A. Branch, A. F. Brooks, D. D. Brown, J. Bryant, C. Cahillane, H. Cao, F. Clara, J. Collins, C. M. Compton, R. Cottingham, D. C. Coyne, R. Crouch, J. Csizmazia, A. Cumming, L. P. Dartez, D. Davis, N. Demos, E. Dohmen, J. C. Driggers, S. E. Dwyer, A. Effler, A. Ejlli, T. Etzel, M. Evans, J. Feicht, R. Frey, W. Frischhertz, P. Fritschel, V. V. Frolov, M. Fuentes-Garcia, P. Fulda, M. Fyffe, D. Ganapathy, B. Gateley, T. Gayer, J. A. Giaime, K. D. Giardina, J. Glanzer, E. Goetz, R. Goetz, A. W. Goodwin-Jones, S. Gras, C. Gray, D. Griffith, H. Grote, T. Guidry, J. Gurs, E. D. Hall, J. Hanks, J. Hanson, M. C. Heintze, A. F. Helmling-Cornell, N. A. Holland, D. Hoyland, H. Y. Huang, Y. Inoue, A. L. James, A. Jamies, A. Jennings, D. H. Jones, H. B. Kabagoz, S. Karat, S. Karki, M. Kasprzack, K. Kawabe, N. Kijbunchoo, P. J. King, J. S. Kissel, K. Komori, A. Kontos, Rahul Kumar, K. Kuns, M. Landry, B. Lantz, M. Laxen, K. Lee, M. Lesovsky, F. Llamas Villarreal, M. Lormand, H. A. Loughlin, R. Macas, M. Macinnis, C. N. Makarem, B. Mannix, G. L. Mansell, R. M. Martin, K. Mason, F. Matichard, N. Mavalvala, N. Maxwell, G. McCarrol, R. McCarthy, D. E. McClelland, S. McCormick, T. McRae, F. Mera, E. L. Merilh, F. Meylahn, R. Mittleman, D. Moraru, G. Moreno, A. Mullavey, T. J.N. Nelson, A. Neunzert, J. Notte, J. Oberling, T. O'Hanlon, C. Osthelder, D. J. Ottaway, H. Overmier, W. Parker, O. Patane, A. Pele, H. Pham, M. Pirello, J. Pullin, V. Quetschke, K. E. Ramirez, K. Ransom, J. Reyes, J. W. Richardson, M. Robinson, J. G. Rollins, C. L. Romel, J. H. Romie, M. P. Ross, K. Ryan, T. Sadecki, A. Sanchez, E. J. Sanchez, L. E. Sanchez, R. L. Savage, D. Schaetzl, M. G. Schiworski, R. Schnabel, R. M.S. Schofield, E. Schwartz, D. Sellers, T. Shaffer, R. W. Short, D. Sigg, B. J.J. Slagmolen, C. Soike, S. Soni, V. Srivastava, L. Sun, D. B. Tanner, M. Thomas, P. Thomas, K. A. Thorne, M. R. Todd, C. I. Torrie, G. Traylor, A. S. Ubhi, G. Vajente, J. Vanosky, A. Vecchio, P. J. Veitch, A. M. Vibhute, E. R.G. Von Reis, J. Warner, B. Weaver, R. Weiss, C. Whittle, B. Willke, C. C. Wipf, J. L. Wright, H. Yamamoto, L. Zhang, M. E. Zucker

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

On May 24, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run.

Original languageEnglish
Article number062002
JournalPhysical Review D
Volume111
Issue number6
DOIs
StatePublished - 15 Mar 2025

Fingerprint

Dive into the research topics of 'Advanced LIGO detector performance in the fourth observing run'. Together they form a unique fingerprint.

Cite this