TY - GEN
T1 - An end-to-end fully automatic bay parking approach for autonomous vehicles
AU - Li, Rui
AU - Wang, Weitian
AU - Chen, Yi
AU - Srinivasan, Srivatsan
AU - Krovi, Venkat N.
N1 - Publisher Copyright:
Copyright © 2018 ASME
PY - 2018
Y1 - 2018
N2 - Fully automatic parking (FAP) is a key step towards the age of autonomous vehicle. Motivated by the contribution of human vision to human parking, in this paper, we propose a computer vision based FAP method for the autonomous vehicles. Based on the input images from a rear camera on the vehicle, a convolutional neural network (CNN) is trained to automatically output the steering and velocity commands for the vehicle controlling. The CNN is trained by Caffe deep learning framework. A 1/10th autonomous vehicle research platform (1/10-SAVRP), which configured with a vehicle controller unit, an automated driving processor, and a rear camera, is used for demonstrating the parking maneuver. The experimental results suggested that the proposed approach enabled the vehicle to gain the ability of parking independently without human input in different driving settings.
AB - Fully automatic parking (FAP) is a key step towards the age of autonomous vehicle. Motivated by the contribution of human vision to human parking, in this paper, we propose a computer vision based FAP method for the autonomous vehicles. Based on the input images from a rear camera on the vehicle, a convolutional neural network (CNN) is trained to automatically output the steering and velocity commands for the vehicle controlling. The CNN is trained by Caffe deep learning framework. A 1/10th autonomous vehicle research platform (1/10-SAVRP), which configured with a vehicle controller unit, an automated driving processor, and a rear camera, is used for demonstrating the parking maneuver. The experimental results suggested that the proposed approach enabled the vehicle to gain the ability of parking independently without human input in different driving settings.
UR - http://www.scopus.com/inward/record.url?scp=85057339925&partnerID=8YFLogxK
U2 - 10.1115/DSCC2018-9126
DO - 10.1115/DSCC2018-9126
M3 - Conference contribution
AN - SCOPUS:85057339925
T3 - ASME 2018 Dynamic Systems and Control Conference, DSCC 2018
BT - Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 Dynamic Systems and Control Conference, DSCC 2018
Y2 - 30 September 2018 through 3 October 2018
ER -