Abstract
Pyrolysis is the heating of organic substances in an inert, oxygen-free atmosphere, thereby avoiding combustion. When performed on a large scale, pyrolysis is involved in industrial processes as diverse as the manufacture of coke from coal and the conversion of biomass into biofuels. In contrast, analytical pyrolysis is a laboratory procedure in which small amounts of organic materials undergo thermal treatment, the products of which are subsequently quantified and/or characterized, for example, by gas chromatography. The pyrolysis may be performed “off-line” or “on-line.” In the off-line case, pyrolysis occurs in stand-alone reactor. The pyrolysis products are then extracted or trapped manually prior to further evaluation by chromatographic or other means. In on-line methods, the pyrolysis reactor is coupled directly to the analytical system, be it the injector of a gas chromatograph or a detector such as a flame ionization device or a mass spectrometer, with the pyrolyzate swept along its course by inert carrier gas. In some cases, a trapping mechanism such as cryofocusing is employed, which can permit the use of multiple detection or analytical systems. On-line methods typically only require milligram or even submilligram quantities of sample. Samples may be analyzed with little pretreatment, thereby minimizing the use of hazardous solvents in the spirit of environmentally conscious “green chemistry.”
Original language | English |
---|---|
Title of host publication | Environmental Applications of Instrumental Chemical Analysis |
Publisher | Apple Academic Press |
Pages | 533-570 |
Number of pages | 38 |
ISBN (Electronic) | 9781482262643 |
ISBN (Print) | 9781771880619 |
DOIs | |
State | Published - 1 Jan 2015 |