TY - JOUR
T1 - Aspects of sporinite chemistry
AU - Kruge, Michael A.
AU - Crelling, John C.
AU - Hippo, Edwin J.
AU - Palmer, Stephen R.
PY - 1991
Y1 - 1991
N2 - With the recent advent of the ability to separate coal into maceral concentrates of high purity, the individual constituents of coal can now be analyzed separately, without their mutual interference, giving a much better understanding of the macromolecular structure of coal. The sporinites from two Pennsylvanian age coal samples (Illinois Basin, U.S.A.) were studied, one from a vitrinite-rich high-volatile bituminous coal, the other from a liptinite-rich high-volatile butuminous coal of slightly higher rank. Sporinites were isolated from each coal by density gradient centrifugation. The sporinite of the vitrinite-rich coal was compared chemically and petrographically with the parent coal and with the sporinite of the liptinite-rich coal. The fluorescence spectrum of the sporinite from the liptinite-rich coal is shifted to the red end of the spectrum, which may be accounted for by the somewhat higher rank of the sample and/or by differences in the original assemblage of spores. The lack of chemical differences between the extracts of the sporinite and its whole coal reinforce the concept of bitumen as an homogeneous mobile phase pervading the coal. Thus, extract chemistry seems an unsuitable technique for distinguishing between macerals from the same coal. Hopane and sterane distributions in the sporinite and parent coal pyrolyzates are very similar, but the two materials can be readily distinguished by the distribution of tetracyclic diterpanes of the phyllocladane type, which are biological marker compounds derived from higher plant material. Overall, the sporinite is considerably more paraffinic in character and has a greater preponderance of straight-chain alkane moieties than the coal as a whole. In the case of the vitrinite-rich coal, the whole-coal structure appears significantly more polyaromatic than the sporinite. The distributions of thiophenic compounds differ in the pyrolyzates of the two materials. The sporinite from the liptinite-rich coal is even less polycondensed than the sporinite from the vitrinite-rich sample. The chemical and petrographic differences of the two sporinites probably reflect the different assemblages of spores in the original peats and their different diagenetic histories.
AB - With the recent advent of the ability to separate coal into maceral concentrates of high purity, the individual constituents of coal can now be analyzed separately, without their mutual interference, giving a much better understanding of the macromolecular structure of coal. The sporinites from two Pennsylvanian age coal samples (Illinois Basin, U.S.A.) were studied, one from a vitrinite-rich high-volatile bituminous coal, the other from a liptinite-rich high-volatile butuminous coal of slightly higher rank. Sporinites were isolated from each coal by density gradient centrifugation. The sporinite of the vitrinite-rich coal was compared chemically and petrographically with the parent coal and with the sporinite of the liptinite-rich coal. The fluorescence spectrum of the sporinite from the liptinite-rich coal is shifted to the red end of the spectrum, which may be accounted for by the somewhat higher rank of the sample and/or by differences in the original assemblage of spores. The lack of chemical differences between the extracts of the sporinite and its whole coal reinforce the concept of bitumen as an homogeneous mobile phase pervading the coal. Thus, extract chemistry seems an unsuitable technique for distinguishing between macerals from the same coal. Hopane and sterane distributions in the sporinite and parent coal pyrolyzates are very similar, but the two materials can be readily distinguished by the distribution of tetracyclic diterpanes of the phyllocladane type, which are biological marker compounds derived from higher plant material. Overall, the sporinite is considerably more paraffinic in character and has a greater preponderance of straight-chain alkane moieties than the coal as a whole. In the case of the vitrinite-rich coal, the whole-coal structure appears significantly more polyaromatic than the sporinite. The distributions of thiophenic compounds differ in the pyrolyzates of the two materials. The sporinite from the liptinite-rich coal is even less polycondensed than the sporinite from the vitrinite-rich sample. The chemical and petrographic differences of the two sporinites probably reflect the different assemblages of spores in the original peats and their different diagenetic histories.
KW - maceral separation
KW - organic geochemistry
KW - pyrolysis
KW - spectral fluorescence
KW - sporinite
UR - http://www.scopus.com/inward/record.url?scp=0025920036&partnerID=8YFLogxK
U2 - 10.1016/0146-6380(91)90077-W
DO - 10.1016/0146-6380(91)90077-W
M3 - Article
AN - SCOPUS:0025920036
SN - 0146-6380
VL - 17
SP - 193
EP - 204
JO - Organic Geochemistry
JF - Organic Geochemistry
IS - 2
ER -