TY - JOUR
T1 - Bacterial residues in coprolite of herbivorous dinosaurs
T2 - Role of bacteria in mineralization of feces
AU - Hollocher, T. C.
AU - Chin, K.
AU - Hollocher, K. T.
AU - Kruge, M. A.
PY - 2001
Y1 - 2001
N2 - The Cretaceous Two Medicine Formation of northwestern Montana has yielded blocky, calcareous coprolites that contain abundant fragments of conifer wood and were produced by large herbivorous dinosaurs. The coprolites are generally dark gray to black in color due to a dark substance confined chiefly within what originally were the capillaries of tracheid and ray cells of xylem. This substance is a kerogen that consists in part of thin-walled vesicles 0.1-1.3 μm in diameter. Pyrolysis products of this kerogen are diagnostic of a bacterial origin with a possible contribution from terrestrial plants. The vesicular component is interpreted as the residue of bacterial cells, whereas a second filamentous component, closely associated with the vesicles, may be the residue of an extracellular binding material, such as glycocalyx. At least two episodes of calcification of the coprolite are recognized by manganous cathodoluminescence. The earlier of these infilled the capillary channels of the conifer fragments. Wood cell walls, voids, cracks, and small burrows were filled during the later episode. Microprobe data confirm these results and show that phosphate is sequestered in the capillaries. These observations suggest that bacteria within the capillaries induced initial mineralization of the coprolite, and, in so doing, created barriers that protected organic residues from subsequent destruction. Early onset of mineralization is consistent with the degree of preservation of woody xylem found in the coprolites.
AB - The Cretaceous Two Medicine Formation of northwestern Montana has yielded blocky, calcareous coprolites that contain abundant fragments of conifer wood and were produced by large herbivorous dinosaurs. The coprolites are generally dark gray to black in color due to a dark substance confined chiefly within what originally were the capillaries of tracheid and ray cells of xylem. This substance is a kerogen that consists in part of thin-walled vesicles 0.1-1.3 μm in diameter. Pyrolysis products of this kerogen are diagnostic of a bacterial origin with a possible contribution from terrestrial plants. The vesicular component is interpreted as the residue of bacterial cells, whereas a second filamentous component, closely associated with the vesicles, may be the residue of an extracellular binding material, such as glycocalyx. At least two episodes of calcification of the coprolite are recognized by manganous cathodoluminescence. The earlier of these infilled the capillary channels of the conifer fragments. Wood cell walls, voids, cracks, and small burrows were filled during the later episode. Microprobe data confirm these results and show that phosphate is sequestered in the capillaries. These observations suggest that bacteria within the capillaries induced initial mineralization of the coprolite, and, in so doing, created barriers that protected organic residues from subsequent destruction. Early onset of mineralization is consistent with the degree of preservation of woody xylem found in the coprolites.
UR - http://www.scopus.com/inward/record.url?scp=0035671441&partnerID=8YFLogxK
U2 - 10.1669/0883-1351(2001)016<0547:BRICOH>2.0.CO;2
DO - 10.1669/0883-1351(2001)016<0547:BRICOH>2.0.CO;2
M3 - Article
AN - SCOPUS:0035671441
SN - 0883-1351
VL - 16
SP - 547
EP - 565
JO - Palaios
JF - Palaios
IS - 6
ER -