Boosting in classifier fusion vs. fusing boosted classifiers

Costin Barbu, Kun Zhang, Jing Peng, Bill Buckles

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

2 Citations (Scopus)

Abstract

In this paper we investigate the performance of boosting used for fusing various classifiers. We propose a new boosting - based algorithm for fusion and we show through empirical studies on texture image data sets that it outperforms existing SVM-based classifier fusion technique in terms of accuracy, computational efficiency and robustness.

Original languageEnglish
Title of host publicationProceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005
Pages332-337
Number of pages6
Volume2005
DOIs
StatePublished - 1 Dec 2005
Event2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005 - Las Vegas, NV, United States
Duration: 15 Aug 200517 Aug 2005

Other

Other2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005
CountryUnited States
CityLas Vegas, NV
Period15/08/0517/08/05

Fingerprint

Classifiers
Fusion reactions
Computational efficiency
Textures

Cite this

Barbu, C., Zhang, K., Peng, J., & Buckles, B. (2005). Boosting in classifier fusion vs. fusing boosted classifiers. In Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005 (Vol. 2005, pp. 332-337). [1506495] https://doi.org/10.1109/IRI-05.2005.1506495
Barbu, Costin ; Zhang, Kun ; Peng, Jing ; Buckles, Bill. / Boosting in classifier fusion vs. fusing boosted classifiers. Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005. Vol. 2005 2005. pp. 332-337
@inproceedings{1ce61ae84ece4de0b0aa3c3713e0bd2c,
title = "Boosting in classifier fusion vs. fusing boosted classifiers",
abstract = "In this paper we investigate the performance of boosting used for fusing various classifiers. We propose a new boosting - based algorithm for fusion and we show through empirical studies on texture image data sets that it outperforms existing SVM-based classifier fusion technique in terms of accuracy, computational efficiency and robustness.",
author = "Costin Barbu and Kun Zhang and Jing Peng and Bill Buckles",
year = "2005",
month = "12",
day = "1",
doi = "10.1109/IRI-05.2005.1506495",
language = "English",
isbn = "0780390938",
volume = "2005",
pages = "332--337",
booktitle = "Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005",

}

Barbu, C, Zhang, K, Peng, J & Buckles, B 2005, Boosting in classifier fusion vs. fusing boosted classifiers. in Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005. vol. 2005, 1506495, pp. 332-337, 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005, Las Vegas, NV, United States, 15/08/05. https://doi.org/10.1109/IRI-05.2005.1506495

Boosting in classifier fusion vs. fusing boosted classifiers. / Barbu, Costin; Zhang, Kun; Peng, Jing; Buckles, Bill.

Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005. Vol. 2005 2005. p. 332-337 1506495.

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

TY - GEN

T1 - Boosting in classifier fusion vs. fusing boosted classifiers

AU - Barbu, Costin

AU - Zhang, Kun

AU - Peng, Jing

AU - Buckles, Bill

PY - 2005/12/1

Y1 - 2005/12/1

N2 - In this paper we investigate the performance of boosting used for fusing various classifiers. We propose a new boosting - based algorithm for fusion and we show through empirical studies on texture image data sets that it outperforms existing SVM-based classifier fusion technique in terms of accuracy, computational efficiency and robustness.

AB - In this paper we investigate the performance of boosting used for fusing various classifiers. We propose a new boosting - based algorithm for fusion and we show through empirical studies on texture image data sets that it outperforms existing SVM-based classifier fusion technique in terms of accuracy, computational efficiency and robustness.

UR - http://www.scopus.com/inward/record.url?scp=33745728485&partnerID=8YFLogxK

U2 - 10.1109/IRI-05.2005.1506495

DO - 10.1109/IRI-05.2005.1506495

M3 - Conference contribution

SN - 0780390938

SN - 9780780390935

VL - 2005

SP - 332

EP - 337

BT - Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005

ER -

Barbu C, Zhang K, Peng J, Buckles B. Boosting in classifier fusion vs. fusing boosted classifiers. In Proceedings of the 2005 IEEE International Conference on Information Reuse and Integration, IRI - 2005. Vol. 2005. 2005. p. 332-337. 1506495 https://doi.org/10.1109/IRI-05.2005.1506495