Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing

(LIGO O4 Detector Collaboration)

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade.

Original languageEnglish
Article number041021
JournalPhysical Review X
Issue number4
StatePublished - Oct 2023


Dive into the research topics of 'Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing'. Together they form a unique fingerprint.

Cite this