Carbonatite metasomatized peridotite xenoliths from southern Patagonia: Implications for lithospheric processes and Neogene plateau magmatism

Matthew Gorring, Suzanne M. Kay

Research output: Contribution to journalArticle

85 Citations (Scopus)

Abstract

The mineral chemistry, major and trace element, and Sr-Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ε(Nd) (+3.0 to +6.6), indicating recent trace element enrichment (˜25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phologopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr-Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of 'intraplate-type' carbonatite metasomatism in an active continental backarc setting.

Original languageEnglish
Pages (from-to)55-72
Number of pages18
JournalContributions to Mineralogy and Petrology
Volume140
Issue number1
DOIs
StatePublished - 1 Jan 2000

Fingerprint

peridotite
carbonatite
Trace Elements
metasomatism
Neogene
magmatism
plateaus
plateau
xenolith
continental lithosphere
lherzolite
trace element
Amphibole Asbestos
spinel
Apatites
trace elements
lithosphere
isotopic composition
Mineralogy
Garnets

Cite this

@article{ba147c635efe4385bfba6cca9bb0cba4,
title = "Carbonatite metasomatized peridotite xenoliths from southern Patagonia: Implications for lithospheric processes and Neogene plateau magmatism",
abstract = "The mineral chemistry, major and trace element, and Sr-Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ε(Nd) (+3.0 to +6.6), indicating recent trace element enrichment (˜25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phologopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr-Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of 'intraplate-type' carbonatite metasomatism in an active continental backarc setting.",
author = "Matthew Gorring and Kay, {Suzanne M.}",
year = "2000",
month = "1",
day = "1",
doi = "10.1007/s004100000164",
language = "English",
volume = "140",
pages = "55--72",
journal = "Contributions to Mineralogy and Petrology",
issn = "0010-7999",
publisher = "Springer Verlag",
number = "1",

}

TY - JOUR

T1 - Carbonatite metasomatized peridotite xenoliths from southern Patagonia

T2 - Implications for lithospheric processes and Neogene plateau magmatism

AU - Gorring, Matthew

AU - Kay, Suzanne M.

PY - 2000/1/1

Y1 - 2000/1/1

N2 - The mineral chemistry, major and trace element, and Sr-Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ε(Nd) (+3.0 to +6.6), indicating recent trace element enrichment (˜25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phologopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr-Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of 'intraplate-type' carbonatite metasomatism in an active continental backarc setting.

AB - The mineral chemistry, major and trace element, and Sr-Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ε(Nd) (+3.0 to +6.6), indicating recent trace element enrichment (˜25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phologopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr-Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of 'intraplate-type' carbonatite metasomatism in an active continental backarc setting.

UR - http://www.scopus.com/inward/record.url?scp=0033663216&partnerID=8YFLogxK

U2 - 10.1007/s004100000164

DO - 10.1007/s004100000164

M3 - Article

AN - SCOPUS:0033663216

VL - 140

SP - 55

EP - 72

JO - Contributions to Mineralogy and Petrology

JF - Contributions to Mineralogy and Petrology

SN - 0010-7999

IS - 1

ER -