TY - JOUR
T1 - Characteristics of iron-containing magnetic particles in household dust from an urban area
T2 - A case study in the megacity of Shanghai
AU - Chen, Yinglu
AU - Zhang, Weiguo
AU - Dong, Chenyin
AU - Hutchinson, Simon M.
AU - Feng, Huan
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/2/15
Y1 - 2022/2/15
N2 - In order to characterize the magnetic properties and trace sources of household dust particles, magnetic measurements, geochemical and SEM/TEM analyses were performed on vacuum dust from 40 homes in Shanghai, China. Iron-containing magnetic particles (IMPs) in the household dust were dominated by magnetite, while maghemite, hematite and metallic iron were also present. The IMPs were mainly composed of coarse-grained particles (e.g., >0.1 µm). Ultrafine superparamagnetic (SP) grains (<30 nm) increased proportionately with the abundance of the total IMPs. Household dust had more and coarser IMPs than background soil, but less and finer IMPs than street dust and industrial emissions (coal combustion and metallurgy). Metallic Fe and spherical IMPs, originating from brake wear abrasion and coal combustion, respectively, have been observed using the SEM/TEM. Contents of magnetic particles were positively correlated to Mo, Ni and Sb, while HIRM was associated with As, Mo, Pb and Sb. The multiple lines of evidence including magnetic measurements, geochemical and SEM/TEM analyses suggested that industrial and traffic emissions and street dust were dominant contributors to the IMPs. Such an approach can help to establish more precisely the sources of household dust particles and could be applied to other indoor contexts and further urban environments.
AB - In order to characterize the magnetic properties and trace sources of household dust particles, magnetic measurements, geochemical and SEM/TEM analyses were performed on vacuum dust from 40 homes in Shanghai, China. Iron-containing magnetic particles (IMPs) in the household dust were dominated by magnetite, while maghemite, hematite and metallic iron were also present. The IMPs were mainly composed of coarse-grained particles (e.g., >0.1 µm). Ultrafine superparamagnetic (SP) grains (<30 nm) increased proportionately with the abundance of the total IMPs. Household dust had more and coarser IMPs than background soil, but less and finer IMPs than street dust and industrial emissions (coal combustion and metallurgy). Metallic Fe and spherical IMPs, originating from brake wear abrasion and coal combustion, respectively, have been observed using the SEM/TEM. Contents of magnetic particles were positively correlated to Mo, Ni and Sb, while HIRM was associated with As, Mo, Pb and Sb. The multiple lines of evidence including magnetic measurements, geochemical and SEM/TEM analyses suggested that industrial and traffic emissions and street dust were dominant contributors to the IMPs. Such an approach can help to establish more precisely the sources of household dust particles and could be applied to other indoor contexts and further urban environments.
KW - Indoor environment
KW - Industrial activity
KW - Magnetic minerals
KW - Source identification
KW - Traffic emission
UR - http://www.scopus.com/inward/record.url?scp=85116167201&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2021.127212
DO - 10.1016/j.jhazmat.2021.127212
M3 - Article
C2 - 34879540
AN - SCOPUS:85116167201
SN - 0304-3894
VL - 424
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 127212
ER -