Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds

Lei Li, Naiyun Gao, Yang Deng, Juanjuan Yao, Kejia Zhang

Research output: Contribution to journalArticle

265 Scopus citations

Abstract

Algae organic matters (AOM), including intracellular organic matters (IOM) and extracellular organic matters (EOM), are causing numerous water quality issues, among which formation of disinfection byproducts (DBPs) and odor & taste (O&T) compounds are of particular concern. In this study, physiochemical properties of IOM and EOM of Microcystic aeruginosa under an exponential growth phase (2.01×10 11/L) were comprehensively characterized. Moreover, the yields of DBPs during AOM disinfection and O&T-causing compounds were quantified. Hydrophilic organic matters accounted for 86% and 63% of DOC in IOM and EOM, respectively. Molecular weight (MW) fractions of IOM in <1kDa, 40-800kDa, and >800kDa were 27%, 42%, and 31% of DOC, respectively, while EOM primarily contained 1-100kDa molecules. Besides, a low SUVA (0.84L/mgm) and the specific fluorescence spectra suggested that AOM (especially IOM) was principally comprised of protein-like substances, instead of humic-like matters. The formation potentials of chloroform, chloroacetic acid, and nitrosodimethylamine were 21.46, 68.29 and 0.0096μg/mgC for IOM, and 32.44, 54.58 and 0.0189μg/mgC for EOM, respectively. Furthermore, the dominant O&T compound produced from EOM and IOM were 2-MIB (68.75ng/mgC) and β-cyclocitral (367.59ng/mgC), respectively. Of note, dimethyltrisulfide became the prevailing O & T compound following anaerobic cultivation.

Original languageEnglish
Pages (from-to)1233-1240
Number of pages8
JournalWater Research
Volume46
Issue number4
DOIs
StatePublished - 15 Mar 2012

Keywords

  • Algae organic matters
  • Disinfection byproducts
  • Extracellular organic matters
  • Intracellular organic matters
  • Microcystic aeruginosa
  • Odor and taste compounds

Fingerprint Dive into the research topics of 'Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds'. Together they form a unique fingerprint.

  • Cite this