TY - JOUR
T1 - Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds
AU - Li, Lei
AU - Gao, Naiyun
AU - Deng, Yang
AU - Yao, Juanjuan
AU - Zhang, Kejia
PY - 2012/3/15
Y1 - 2012/3/15
N2 - Algae organic matters (AOM), including intracellular organic matters (IOM) and extracellular organic matters (EOM), are causing numerous water quality issues, among which formation of disinfection byproducts (DBPs) and odor & taste (O&T) compounds are of particular concern. In this study, physiochemical properties of IOM and EOM of Microcystic aeruginosa under an exponential growth phase (2.01×1011/L) were comprehensively characterized. Moreover, the yields of DBPs during AOM disinfection and O&T-causing compounds were quantified. Hydrophilic organic matters accounted for 86% and 63% of DOC in IOM and EOM, respectively. Molecular weight (MW) fractions of IOM in <1kDa, 40-800kDa, and >800kDa were 27%, 42%, and 31% of DOC, respectively, while EOM primarily contained 1-100kDa molecules. Besides, a low SUVA (0.84L/mgm) and the specific fluorescence spectra suggested that AOM (especially IOM) was principally comprised of protein-like substances, instead of humic-like matters. The formation potentials of chloroform, chloroacetic acid, and nitrosodimethylamine were 21.46, 68.29 and 0.0096μg/mgC for IOM, and 32.44, 54.58 and 0.0189μg/mgC for EOM, respectively. Furthermore, the dominant O&T compound produced from EOM and IOM were 2-MIB (68.75ng/mgC) and β-cyclocitral (367.59ng/mgC), respectively. Of note, dimethyltrisulfide became the prevailing O & T compound following anaerobic cultivation.
AB - Algae organic matters (AOM), including intracellular organic matters (IOM) and extracellular organic matters (EOM), are causing numerous water quality issues, among which formation of disinfection byproducts (DBPs) and odor & taste (O&T) compounds are of particular concern. In this study, physiochemical properties of IOM and EOM of Microcystic aeruginosa under an exponential growth phase (2.01×1011/L) were comprehensively characterized. Moreover, the yields of DBPs during AOM disinfection and O&T-causing compounds were quantified. Hydrophilic organic matters accounted for 86% and 63% of DOC in IOM and EOM, respectively. Molecular weight (MW) fractions of IOM in <1kDa, 40-800kDa, and >800kDa were 27%, 42%, and 31% of DOC, respectively, while EOM primarily contained 1-100kDa molecules. Besides, a low SUVA (0.84L/mgm) and the specific fluorescence spectra suggested that AOM (especially IOM) was principally comprised of protein-like substances, instead of humic-like matters. The formation potentials of chloroform, chloroacetic acid, and nitrosodimethylamine were 21.46, 68.29 and 0.0096μg/mgC for IOM, and 32.44, 54.58 and 0.0189μg/mgC for EOM, respectively. Furthermore, the dominant O&T compound produced from EOM and IOM were 2-MIB (68.75ng/mgC) and β-cyclocitral (367.59ng/mgC), respectively. Of note, dimethyltrisulfide became the prevailing O & T compound following anaerobic cultivation.
KW - Algae organic matters
KW - Disinfection byproducts
KW - Extracellular organic matters
KW - Intracellular organic matters
KW - Microcystic aeruginosa
KW - Odor and taste compounds
UR - http://www.scopus.com/inward/record.url?scp=84856091771&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2011.12.026
DO - 10.1016/j.watres.2011.12.026
M3 - Article
C2 - 22209198
AN - SCOPUS:84856091771
SN - 0043-1354
VL - 46
SP - 1233
EP - 1240
JO - Water Research
JF - Water Research
IS - 4
ER -