TY - GEN
T1 - Chernoff dimensionality reduction-where fisher meets FKT
AU - Peng, Jing
AU - Seetharaman, Guna
AU - Fan, Wei
AU - Robila, Stefan
AU - Varde, Aparna
PY - 2011
Y1 - 2011
N2 - Well known linear discriminant analysis (LDA) based on the Fisher criterion is incapable of dealing with heteroscedasticity in data. However, in many practical applications we often encounter heteroscedastic data, i.e., within-class scatter matrices can not be expected to be equal. A technique based on the Chernoff criterion for linear dimensionality reduction has been proposed recently. The technique extends well-known Fisher's LDA and is capable of exploiting information about heteroscedasticity in the data. While the Chernoff criterion has been shown to outperform the Fisher's, a clear understanding of its exact behavior is lacking. In addition, the criterion, as introduced, is rather complex, making it difficult to clearly state its relationship to other linear dimensionality reduction techniques. In this paper, we show precisely what can be expected from the Chernoff criterion and its relations to the Fisher criterion and Fukunaga-Koontz transform. Furthermore, we show that a recently proposed decomposition of the data space into four subspaces is incomplete. We provide arguments on how to best enrich the decomposition of the data space in order to account for heteroscedasticity in the data. Finally, we provide experimental results validating our theoretical analysis.
AB - Well known linear discriminant analysis (LDA) based on the Fisher criterion is incapable of dealing with heteroscedasticity in data. However, in many practical applications we often encounter heteroscedastic data, i.e., within-class scatter matrices can not be expected to be equal. A technique based on the Chernoff criterion for linear dimensionality reduction has been proposed recently. The technique extends well-known Fisher's LDA and is capable of exploiting information about heteroscedasticity in the data. While the Chernoff criterion has been shown to outperform the Fisher's, a clear understanding of its exact behavior is lacking. In addition, the criterion, as introduced, is rather complex, making it difficult to clearly state its relationship to other linear dimensionality reduction techniques. In this paper, we show precisely what can be expected from the Chernoff criterion and its relations to the Fisher criterion and Fukunaga-Koontz transform. Furthermore, we show that a recently proposed decomposition of the data space into four subspaces is incomplete. We provide arguments on how to best enrich the decomposition of the data space in order to account for heteroscedasticity in the data. Finally, we provide experimental results validating our theoretical analysis.
KW - Chernoff distance
KW - Dimension reduction
KW - FKT
KW - LDA
UR - http://www.scopus.com/inward/record.url?scp=84873201295&partnerID=8YFLogxK
U2 - 10.1137/1.9781611972818.24
DO - 10.1137/1.9781611972818.24
M3 - Conference contribution
AN - SCOPUS:84873201295
SN - 9780898719925
T3 - Proceedings of the 11th SIAM International Conference on Data Mining, SDM 2011
SP - 271
EP - 282
BT - Proceedings of the 11th SIAM International Conference on Data Mining, SDM 2011
PB - Society for Industrial and Applied Mathematics Publications
T2 - 11th SIAM International Conference on Data Mining, SDM 2011
Y2 - 28 April 2011 through 30 April 2011
ER -