Comprehensive cough data analysis on CODA TB

Jyoti Yadav, Aparna S. Varde, Lei Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work leverages CODA TB, a groundbreaking dataset for a novel comprehensive method of early TB detection from medical big data. Departing from the erstwhile, we find mere cough duration less effective in TB prediction. We discover key demographic and clinical factors (e.g. heart rate, presenting symptoms) to be crucial in distinguishing TB cases, motivating comprehensive cough data analysis with enhanced screening.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE International Conference on Big Data, BigData 2023
EditorsJingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, Rakesh Agrawal
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6311-6313
Number of pages3
ISBN (Electronic)9798350324457
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Big Data, BigData 2023 - Sorrento, Italy
Duration: 15 Dec 202318 Dec 2023

Publication series

NameProceedings - 2023 IEEE International Conference on Big Data, BigData 2023

Conference

Conference2023 IEEE International Conference on Big Data, BigData 2023
Country/TerritoryItaly
CitySorrento
Period15/12/2318/12/23

Keywords

  • Audio-visual analysis
  • medical big data
  • TB detection

Fingerprint

Dive into the research topics of 'Comprehensive cough data analysis on CODA TB'. Together they form a unique fingerprint.

Cite this