Computational fluid dynamics of aggregating red blood cells in postcapillary venules

Bong Chung, Sangho Kim, Paul C. Johnson, Aleksander S. Popel

    Research output: Contribution to journalArticlepeer-review

    6 Scopus citations

    Abstract

    Aggregate formation of red blood cells (RBCs) in a postcapillary venular bifurcation is investigated with three-dimensional computer simulations using the Chimera grid method. Interaction energy between the RBCs is modelled by a depletion interaction theory; RBCs are modelled as rigid oblate ellipsoids. The cell-cell interactions of RBCs are strongly dependent on vessel geometry and shear rates. The experimental data on vessel geometry, pseudoshear rates, and Dextran concentration obtained in our previous in vivo RBC aggregation study in postcapillary venules of the rat spinotrapezius muscle were used to simulate RBC aggregation. The computational results were compared to the experimental results from the in vivo study. The results show that cells have a larger tendency to form an aggregate under reduced flows. Aggregate formation also depends on the angle and location of the cells before they enter the bifurcation region. Comparisons with experimental data are discussed.

    Original languageEnglish
    Pages (from-to)385-397
    Number of pages13
    JournalComputer Methods in Biomechanics and Biomedical Engineering
    Volume12
    Issue number4
    DOIs
    StatePublished - 2009

    Keywords

    • Chimera grid
    • Depletion interaction energy
    • Postcapillary venule
    • RBC aggregation
    • Red blood cell

    Fingerprint

    Dive into the research topics of 'Computational fluid dynamics of aggregating red blood cells in postcapillary venules'. Together they form a unique fingerprint.

    Cite this