TY - GEN
T1 - CooKIE, a tool for developing RF communication systems for the internet of things
AU - Miller, Kevin S.
AU - Leberknight, Christopher S.
N1 - Publisher Copyright:
© 2019 IEEE Computer Society. All rights reserved.
PY - 2019
Y1 - 2019
N2 - There is a need for high-efficiency short-range wireless communications to connect IoT devices that have low to medium security requirements. A hardware/software tool was developed to help IoT product developers quickly and easily develop radio frequency (RF) communication systems for IoT devices where previously this was a manual, one-off process. The tool uses Software Defined Radio (SDR) and focuses on On-Off-Keying (OOK) modulation. It can be used by persons with limited knowledge of RF to analyze existing devices and capture its characteristics, which can be used to create and transmit new messages, in effect spoofing it. New device definitions can be implemented in low-cost off-the-shelf hardware for production. OOK has been found to be very efficient at binary RF communications because the transmitter is only powered when a “1” is being transmitted. This efficiency translates into a battery life of up to one year. Implementations of this system could include arrays of sensors that periodically transmit data to a traditionally-powered Internet-connected receiver. Another possible use of this system could be low-cost small transmitters to track animal movements in a defined area. Receivers placed around the area could record the time and signal strength of the transmissions. Software would be used to analyze the data and plot the animal's movements. Because the RF transmissions have a specific range, the opportunity to intercept, modify or spoof communications is highly variable. For sensitive data, rolling codes and/or public/private key encryption could be used for encoding before modulating with OOK.
AB - There is a need for high-efficiency short-range wireless communications to connect IoT devices that have low to medium security requirements. A hardware/software tool was developed to help IoT product developers quickly and easily develop radio frequency (RF) communication systems for IoT devices where previously this was a manual, one-off process. The tool uses Software Defined Radio (SDR) and focuses on On-Off-Keying (OOK) modulation. It can be used by persons with limited knowledge of RF to analyze existing devices and capture its characteristics, which can be used to create and transmit new messages, in effect spoofing it. New device definitions can be implemented in low-cost off-the-shelf hardware for production. OOK has been found to be very efficient at binary RF communications because the transmitter is only powered when a “1” is being transmitted. This efficiency translates into a battery life of up to one year. Implementations of this system could include arrays of sensors that periodically transmit data to a traditionally-powered Internet-connected receiver. Another possible use of this system could be low-cost small transmitters to track animal movements in a defined area. Receivers placed around the area could record the time and signal strength of the transmissions. Software would be used to analyze the data and plot the animal's movements. Because the RF transmissions have a specific range, the opportunity to intercept, modify or spoof communications is highly variable. For sensitive data, rolling codes and/or public/private key encryption could be used for encoding before modulating with OOK.
UR - http://www.scopus.com/inward/record.url?scp=85108273575&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85108273575
T3 - Proceedings of the Annual Hawaii International Conference on System Sciences
SP - 7215
EP - 7220
BT - Proceedings of the 52nd Annual Hawaii International Conference on System Sciences, HICSS 2019
A2 - Bui, Tung X.
PB - IEEE Computer Society
T2 - 52nd Annual Hawaii International Conference on System Sciences, HICSS 2019
Y2 - 8 January 2019 through 11 January 2019
ER -