Cross domain distribution adaptation via kernel mapping

Erheng Zhong, Wei Fan, Jing Peng, Kun Zhang, Jiangtao Ren, Deepak Turaga, Olivier Verscheure

Research output: Chapter in Book/Report/Conference proceedingConference contribution

83 Scopus citations

Abstract

When labeled examples are limited and difficult to obtain, transfer learning employs knowledge from a source domain to improve learning accuracy in the target domain. However, the assumption made by existing approaches, that the marginal and conditional probabilities are directly related between source and target domains, has limited applicability in either the original space or its linear transformations. To solve this problem, we propose an adaptive kernel approach that maps the marginal distribution of targetdomain and source-domain data into a common kernel space, and utilize a sample selection strategy to draw conditional probabilities between the two domains closer. We formally show that under the kernel-mapping space, the difference in distributions between the two domains is bounded; and the prediction error of the proposed approach can also be bounded. Experimental results demonstrate that the proposed method outperforms both traditional inductive classifiers and the state-of-the-art boosting-based transfer algorithms on most domains, including text categorization and web page ratings. In particular, it can achieve around 10% higher accuracy than other approaches for the text categorization problem. The source code and datasets are available from the authors.

Original languageEnglish
Title of host publicationKDD '09
Subtitle of host publicationProceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Pages1027-1035
Number of pages9
DOIs
StatePublished - 9 Nov 2009
Event15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09 - Paris, France
Duration: 28 Jun 20091 Jul 2009

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Other

Other15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09
CountryFrance
CityParis
Period28/06/091/07/09

Fingerprint Dive into the research topics of 'Cross domain distribution adaptation via kernel mapping'. Together they form a unique fingerprint.

  • Cite this

    Zhong, E., Fan, W., Peng, J., Zhang, K., Ren, J., Turaga, D., & Verscheure, O. (2009). Cross domain distribution adaptation via kernel mapping. In KDD '09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1027-1035). (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining). https://doi.org/10.1145/1557019.1557130