TY - JOUR
T1 - Destruction of Per- A nd Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs)
T2 - A Critical Review
AU - Cui, Junkui
AU - Gao, Panpan
AU - Deng, Yang
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/4/7
Y1 - 2020/4/7
N2 - Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- A nd polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (eaq -). This study provides a critical review on the mechanisms and performance of reductive destruction of PFAS with eaq -. Unique properties of eaq - and its generation in different ARP systems, particularly UV/sulfite and UV/iodide, are overviewed. Different degradation mechanisms of PFAS chemicals, such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and others (e.g., short chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), per- A nd polyfluoro dicarboxylic acids, and fluorotelomer carboxylic acids), are reviewed, discussed, and compared. The degradation pathways of these PFAS chemicals rely heavily upon their head groups. For specific PFAS types, fluoroalkyl chain lengths may also affect their reductive degradation patterns. Degradation and defluorination efficiencies of PFAS are considerably influenced by solution chemistry parameters and operating factors, such as pH, dose of chemical solute (i.e., sulfite or iodide) for eaq - photoproduction, dissolved oxygen, humic acid, nitrate, and temperature. Furthermore, implications of the state-of-the-art knowledge on practical PFAS control actions in water industries are discussed and the priority research needs are identified.
AB - Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- A nd polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (eaq -). This study provides a critical review on the mechanisms and performance of reductive destruction of PFAS with eaq -. Unique properties of eaq - and its generation in different ARP systems, particularly UV/sulfite and UV/iodide, are overviewed. Different degradation mechanisms of PFAS chemicals, such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and others (e.g., short chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), per- A nd polyfluoro dicarboxylic acids, and fluorotelomer carboxylic acids), are reviewed, discussed, and compared. The degradation pathways of these PFAS chemicals rely heavily upon their head groups. For specific PFAS types, fluoroalkyl chain lengths may also affect their reductive degradation patterns. Degradation and defluorination efficiencies of PFAS are considerably influenced by solution chemistry parameters and operating factors, such as pH, dose of chemical solute (i.e., sulfite or iodide) for eaq - photoproduction, dissolved oxygen, humic acid, nitrate, and temperature. Furthermore, implications of the state-of-the-art knowledge on practical PFAS control actions in water industries are discussed and the priority research needs are identified.
UR - http://www.scopus.com/inward/record.url?scp=85083002720&partnerID=8YFLogxK
U2 - 10.1021/acs.est.9b05565
DO - 10.1021/acs.est.9b05565
M3 - Review article
C2 - 32162904
AN - SCOPUS:85083002720
SN - 0013-936X
VL - 54
SP - 3752
EP - 3766
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 7
ER -