Destruction of Per- A nd Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review

Junkui Cui, Panpan Gao, Yang Deng

Research output: Contribution to journalReview articlepeer-review

233 Scopus citations


Advanced reduction processes (ARPs) have emerged as a promising method for destruction of persistent per- A nd polyfluoroalkyl substances (PFAS) in water due to the generation of short-lived and highly reductive hydrated electrons (eaq -). This study provides a critical review on the mechanisms and performance of reductive destruction of PFAS with eaq -. Unique properties of eaq - and its generation in different ARP systems, particularly UV/sulfite and UV/iodide, are overviewed. Different degradation mechanisms of PFAS chemicals, such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and others (e.g., short chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), per- A nd polyfluoro dicarboxylic acids, and fluorotelomer carboxylic acids), are reviewed, discussed, and compared. The degradation pathways of these PFAS chemicals rely heavily upon their head groups. For specific PFAS types, fluoroalkyl chain lengths may also affect their reductive degradation patterns. Degradation and defluorination efficiencies of PFAS are considerably influenced by solution chemistry parameters and operating factors, such as pH, dose of chemical solute (i.e., sulfite or iodide) for eaq - photoproduction, dissolved oxygen, humic acid, nitrate, and temperature. Furthermore, implications of the state-of-the-art knowledge on practical PFAS control actions in water industries are discussed and the priority research needs are identified.

Original languageEnglish
Pages (from-to)3752-3766
Number of pages15
JournalEnvironmental Science and Technology
Issue number7
StatePublished - 7 Apr 2020


Dive into the research topics of 'Destruction of Per- A nd Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review'. Together they form a unique fingerprint.

Cite this