Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity

Wen Wen Tung, Yan Qi, J. B. Gao, Yinhe Cao, Lora Billings

    Research output: Contribution to journalArticlepeer-review

    6 Scopus citations

    Abstract

    In recent years it has been increasingly recognized that noise and determinism may have comparable but different influences on population dynamics. However, no simple analysis methods have been introduced into ecology which can readily characterize those impacts. In this paper, we study a population model with strong periodicity and both with and without noise. The noise-free model generates both quasi-periodic and chaotic dynamics for certain parameter values. Due to the strong periodicity, however, the generated chaotic dynamics have not been satisfactorily described. The dynamics becomes even more complicated when there is noise. Characterizing the chaotic and stochastic dynamics in this model thus represents a challenging problem. Here we show how the chaotic dynamics can be readily characterized by the direct dynamical test for deterministic chaos developed by [Gao JB, Zheng ZM. Europhys. Lett. 1994;25:485] and how the influence of noise on quasi-periodic motions can be characterized as asymmetric diffusions wandering along the quasi-periodic orbit. It is hoped that the introduced methods will be useful in studying other population models as well as population time series obtained both in field and laboratory experiments.

    Original languageEnglish
    Pages (from-to)645-652
    Number of pages8
    JournalChaos, Solitons and Fractals
    Volume24
    Issue number2
    DOIs
    StatePublished - Apr 2005

    Fingerprint

    Dive into the research topics of 'Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity'. Together they form a unique fingerprint.

    Cite this