DISCERN for Generalizable Robotic Contexts

Swagnik Roychoudhury, Aparna S. Varde

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work demonstrates DISCERN (Detection Image System with Commonsense Efficient Ranking Network), a novel generalizable task-ranking approach to improve human-robot collaboration via "discern"-ing with commonsense knowledge (CSK) derived from huge data repositories, augmented with image models and other everyday premises. It is an explainable, efficient solution useful to dynamic multipurpose robots.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE International Conference on Big Data, BigData 2024
EditorsWei Ding, Chang-Tien Lu, Fusheng Wang, Liping Di, Kesheng Wu, Jun Huan, Raghu Nambiar, Jundong Li, Filip Ilievski, Ricardo Baeza-Yates, Xiaohua Hu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8819-8821
Number of pages3
ISBN (Electronic)9798350362480
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Big Data, BigData 2024 - Washington, United States
Duration: 15 Dec 202418 Dec 2024

Publication series

NameProceedings - 2024 IEEE International Conference on Big Data, BigData 2024

Conference

Conference2024 IEEE International Conference on Big Data, BigData 2024
Country/TerritoryUnited States
CityWashington
Period15/12/2418/12/24

Keywords

  • AI & Robotics
  • Commonsense Reasoning
  • CSK
  • Human-Robot Collaboration
  • Sustainable AI
  • Task Planning
  • XAI

Fingerprint

Dive into the research topics of 'DISCERN for Generalizable Robotic Contexts'. Together they form a unique fingerprint.

Cite this