TY - JOUR
T1 - Documenting professional learning focused on implementing high-quality instructional materials in mathematics
T2 - the AIM–TRU learning cycle
AU - Russell, John Lawson
AU - DiNapoli, Joseph
AU - Murray, Eileen
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: To increase teachers’ capacity to implement high-quality instructional materials with fidelity in their classrooms through a video-based professional learning cycle, the Analyzing Instruction in Mathematics Using the Teaching for Robust Understanding framework (AIM–TRU) research–practice partnership was formed. Drawing upon the design-based research paradigm, AIM–TRU created the initial design for the professional learning cycle and wanted to engage in continued iterative redesign as the year progressed. This necessitated a method, common among those who adjust their designs when applying them in context, by which to document and justify changes made over time to our model. The research contained in this article used qualitative methods to articulate and test the design underlying our professional learning cycle by advancing conjecture mapping, a device by which the embodiments of the design are made transparent to be analyzed in practice. Results: The initial design conjectures and activity structures teachers engaged in through our model of professional learning were refined to address three themes that emerged. Firstly, it was found that the ways participants engaged with the mathematics of the lesson were underwhelming, in large part, because our own definition of what rich talk around mathematics should entail was lacking in details such as the mathematical objects in the lesson, the presence of multiple solution pathways, or the various representations that students could use. Second, talk structures did not always allow for equitable exchanges among all teachers. Finally, activity structures did not encourage teachers to delve deeply into the mathematics so they could perceive the lesson as a coherent piece of their own classroom curriculum. Our design conjectures and activity structures were revised over the course of the year. Conclusions: Our use of conjecture mapping allowed us to address the concern with research–practice partnerships that they should develop and utilize tools that make the systemic inquiry they engage in transparent, allowing for other researchers, practitioners, and stakeholders to see the complete design process and make use of the findings for their local context. Implications for this process as a tool for those who pilot and scale professional development are raised and addressed.
AB - Background: To increase teachers’ capacity to implement high-quality instructional materials with fidelity in their classrooms through a video-based professional learning cycle, the Analyzing Instruction in Mathematics Using the Teaching for Robust Understanding framework (AIM–TRU) research–practice partnership was formed. Drawing upon the design-based research paradigm, AIM–TRU created the initial design for the professional learning cycle and wanted to engage in continued iterative redesign as the year progressed. This necessitated a method, common among those who adjust their designs when applying them in context, by which to document and justify changes made over time to our model. The research contained in this article used qualitative methods to articulate and test the design underlying our professional learning cycle by advancing conjecture mapping, a device by which the embodiments of the design are made transparent to be analyzed in practice. Results: The initial design conjectures and activity structures teachers engaged in through our model of professional learning were refined to address three themes that emerged. Firstly, it was found that the ways participants engaged with the mathematics of the lesson were underwhelming, in large part, because our own definition of what rich talk around mathematics should entail was lacking in details such as the mathematical objects in the lesson, the presence of multiple solution pathways, or the various representations that students could use. Second, talk structures did not always allow for equitable exchanges among all teachers. Finally, activity structures did not encourage teachers to delve deeply into the mathematics so they could perceive the lesson as a coherent piece of their own classroom curriculum. Our design conjectures and activity structures were revised over the course of the year. Conclusions: Our use of conjecture mapping allowed us to address the concern with research–practice partnerships that they should develop and utilize tools that make the systemic inquiry they engage in transparent, allowing for other researchers, practitioners, and stakeholders to see the complete design process and make use of the findings for their local context. Implications for this process as a tool for those who pilot and scale professional development are raised and addressed.
KW - Conjecture mapping
KW - Design-based research
KW - Implementation research
KW - Mathematics teacher learning
KW - Professional development
UR - http://www.scopus.com/inward/record.url?scp=85134262934&partnerID=8YFLogxK
U2 - 10.1186/s40594-022-00362-y
DO - 10.1186/s40594-022-00362-y
M3 - Article
AN - SCOPUS:85134262934
SN - 2196-7822
VL - 9
JO - International Journal of STEM Education
JF - International Journal of STEM Education
IS - 1
M1 - 46
ER -