TY - JOUR
T1 - Effects of high-intensity forest fires on soil clay mineralogy
AU - Reynard-Callanan, Jennifer
AU - Pope, Gregory
AU - Gorring, Matthew
AU - Feng, Huan
PY - 2010/9/1
Y1 - 2010/9/1
N2 - High-intensity forest fires can degrade, collapse, or completely destroy clay minerals in soils, with signatures of these changes remaining for years after the burns. To ascertain immediate impacts of high-intensity fire on soil clay minerals and mineral recovery over time, soil from the 2002 Hayman, Colorado, fire was analyzed by X-ray diffraction. Sample locations included burned soil from within the perimeter of the fire, unburned soil near the origin, and soil from adjacent historic burns. The unburned soils contain mixtures of illite, mixed-layer illite/smectite and illite/vermiculite, kaolin, and mixed-layer chlorite. Surface soils (surface-7.7 cm) contain illite, mixed-layer illite/smectite, and kaolin. Sub-surface soils (7.7-13.0 cm) contain mixed-layer illite/vermiculite, in addition to the same minerals found at the surface. Deep soils (13.0-27.0 cm) show disappearance of mixed-layer illite/smectite and illite/vermiculite and show evidence of the presence of mixed-layer chlorite. Comparisons between recently and historically burned soils and unburned soils showed slight trends in alterations of clay mineral structures in the surface soil, including alteration of the 001 illite peak, the 001 kaolin peak, and a decrease in the swelling component of mixed-layer illite/smectite. These trends indicate fire impacts the structure of soil clay minerals.
AB - High-intensity forest fires can degrade, collapse, or completely destroy clay minerals in soils, with signatures of these changes remaining for years after the burns. To ascertain immediate impacts of high-intensity fire on soil clay minerals and mineral recovery over time, soil from the 2002 Hayman, Colorado, fire was analyzed by X-ray diffraction. Sample locations included burned soil from within the perimeter of the fire, unburned soil near the origin, and soil from adjacent historic burns. The unburned soils contain mixtures of illite, mixed-layer illite/smectite and illite/vermiculite, kaolin, and mixed-layer chlorite. Surface soils (surface-7.7 cm) contain illite, mixed-layer illite/smectite, and kaolin. Sub-surface soils (7.7-13.0 cm) contain mixed-layer illite/vermiculite, in addition to the same minerals found at the surface. Deep soils (13.0-27.0 cm) show disappearance of mixed-layer illite/smectite and illite/vermiculite and show evidence of the presence of mixed-layer chlorite. Comparisons between recently and historically burned soils and unburned soils showed slight trends in alterations of clay mineral structures in the surface soil, including alteration of the 001 illite peak, the 001 kaolin peak, and a decrease in the swelling component of mixed-layer illite/smectite. These trends indicate fire impacts the structure of soil clay minerals.
KW - Clay minerals
KW - Colorado
KW - Forest fire
KW - Illite
KW - Pedogenesis
UR - http://www.scopus.com/inward/record.url?scp=78650615741&partnerID=8YFLogxK
U2 - 10.2747/0272-3646.31.5.407
DO - 10.2747/0272-3646.31.5.407
M3 - Article
AN - SCOPUS:78650615741
SN - 0272-3646
VL - 31
SP - 407
EP - 422
JO - Physical Geography
JF - Physical Geography
IS - 5
ER -