Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses

R. M. Martin, R. S. Quimby

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

The validity of the theory of McCumber (Phys. Rev. 136, A954 (1964)] has been tested by applying it to a number of ground-state transition in various rare-earth-doped glasses. Special attention was given to those aspects of the experimental procedure that can lead to systematic errors, such as reabsorption of fluorescence and baseline subtraction uncertainties in the absorption measurements. To ensure consistency between absorption and fluorescence measurements, we used the same geometry for light collection and measurement. With these experimental procedures properly implemented, we find that in all cases there is excellent agreement between the spectral shape of calculated and measured cross-section spectra at room temperature. This is true even for the thermally coupled (2H9/2, 4F5/2) and 4F3/2 levels of Nd, which span an energy range of ∼2000 cm-1, much larger than the typical width of a single Stark level manifold. The results suggest that, at room temperature, the McCumber theory is not restricted to crystalline hosts but remains valid for the broader transitions characteristic of rare-earth-doped glass.

Original languageEnglish
Pages (from-to)1770-1775
Number of pages6
JournalJournal of the Optical Society of America B: Optical Physics
Volume23
Issue number9
DOIs
StatePublished - Sep 2006

Fingerprint

rare earth elements
glass
fluorescence
room temperature
subtraction
systematic errors
ground state
cross sections
geometry
energy

Cite this

@article{a67d93f495a241ba984bd77e6c124a09,
title = "Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses",
abstract = "The validity of the theory of McCumber (Phys. Rev. 136, A954 (1964)] has been tested by applying it to a number of ground-state transition in various rare-earth-doped glasses. Special attention was given to those aspects of the experimental procedure that can lead to systematic errors, such as reabsorption of fluorescence and baseline subtraction uncertainties in the absorption measurements. To ensure consistency between absorption and fluorescence measurements, we used the same geometry for light collection and measurement. With these experimental procedures properly implemented, we find that in all cases there is excellent agreement between the spectral shape of calculated and measured cross-section spectra at room temperature. This is true even for the thermally coupled (2H9/2, 4F5/2) and 4F3/2 levels of Nd, which span an energy range of ∼2000 cm-1, much larger than the typical width of a single Stark level manifold. The results suggest that, at room temperature, the McCumber theory is not restricted to crystalline hosts but remains valid for the broader transitions characteristic of rare-earth-doped glass.",
author = "Martin, {R. M.} and Quimby, {R. S.}",
year = "2006",
month = "9",
doi = "10.1364/JOSAB.23.001770",
language = "English",
volume = "23",
pages = "1770--1775",
journal = "Journal of the Optical Society of America B: Optical Physics",
issn = "0740-3224",
publisher = "The Optical Society",
number = "9",

}

TY - JOUR

T1 - Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses

AU - Martin, R. M.

AU - Quimby, R. S.

PY - 2006/9

Y1 - 2006/9

N2 - The validity of the theory of McCumber (Phys. Rev. 136, A954 (1964)] has been tested by applying it to a number of ground-state transition in various rare-earth-doped glasses. Special attention was given to those aspects of the experimental procedure that can lead to systematic errors, such as reabsorption of fluorescence and baseline subtraction uncertainties in the absorption measurements. To ensure consistency between absorption and fluorescence measurements, we used the same geometry for light collection and measurement. With these experimental procedures properly implemented, we find that in all cases there is excellent agreement between the spectral shape of calculated and measured cross-section spectra at room temperature. This is true even for the thermally coupled (2H9/2, 4F5/2) and 4F3/2 levels of Nd, which span an energy range of ∼2000 cm-1, much larger than the typical width of a single Stark level manifold. The results suggest that, at room temperature, the McCumber theory is not restricted to crystalline hosts but remains valid for the broader transitions characteristic of rare-earth-doped glass.

AB - The validity of the theory of McCumber (Phys. Rev. 136, A954 (1964)] has been tested by applying it to a number of ground-state transition in various rare-earth-doped glasses. Special attention was given to those aspects of the experimental procedure that can lead to systematic errors, such as reabsorption of fluorescence and baseline subtraction uncertainties in the absorption measurements. To ensure consistency between absorption and fluorescence measurements, we used the same geometry for light collection and measurement. With these experimental procedures properly implemented, we find that in all cases there is excellent agreement between the spectral shape of calculated and measured cross-section spectra at room temperature. This is true even for the thermally coupled (2H9/2, 4F5/2) and 4F3/2 levels of Nd, which span an energy range of ∼2000 cm-1, much larger than the typical width of a single Stark level manifold. The results suggest that, at room temperature, the McCumber theory is not restricted to crystalline hosts but remains valid for the broader transitions characteristic of rare-earth-doped glass.

UR - http://www.scopus.com/inward/record.url?scp=33749586130&partnerID=8YFLogxK

U2 - 10.1364/JOSAB.23.001770

DO - 10.1364/JOSAB.23.001770

M3 - Article

AN - SCOPUS:33749586130

VL - 23

SP - 1770

EP - 1775

JO - Journal of the Optical Society of America B: Optical Physics

JF - Journal of the Optical Society of America B: Optical Physics

SN - 0740-3224

IS - 9

ER -