Exploring the Source of Neural Responses of Different Latencies Obtained from Different Recording Electrodes in Cochlear Implant Users

Akinori Kashio, Viral D. Tejani, Rachel A. Scheperle, Carolyn J. Brown, Paul J. Abbas

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

In this study we measured the electrically evoked compound action potential (ECAP) from different recording electrodes in the cochlea. Under the assumption that different response latencies may be the result of differences in the neural population contributing to the response, we assessed the relationship between neural response latency and spread of excitation. First, we evaluated changes in N1 latency when the recording electrode site was varied. Second, we recorded channel interaction functions using a forward masking technique but with recording electrodes at different intracochlear locations. For most individuals, N1 latency was similar across recording electrodes. However, reduced N1 latencies were observed in 21% of cochlear implant users when ECAPs were recorded using a remote recording electrode. We hypothesized that if recordings from different electrodes represented contributions from different populations of neurons, then one might expect that channel interaction functions would be different. However, we did not observe consistent differences in channel interaction functions (neither peak location nor breadth of the functions), and further, any variation in channel interaction functions was not correlated with ECAP latency. These results suggest that ECAPs from different recording electrodes with different latencies originate from similar neural populations.

Original languageEnglish
Pages (from-to)141-149
Number of pages9
JournalAudiology and Neurotology
Volume21
Issue number3
DOIs
StatePublished - 1 Jul 2016

Keywords

  • Auditory evoked potentials
  • Auditory system
  • Cochlear implant
  • Compound action potential
  • Electrically evoked potential

Fingerprint

Dive into the research topics of 'Exploring the Source of Neural Responses of Different Latencies Obtained from Different Recording Electrodes in Cochlear Implant Users'. Together they form a unique fingerprint.

Cite this