Abstract
The artificial neural networks (ANNs) have been used successfully in applications such as pattern recognition, image processing, automation and control. Majority of today's applications use backpropagate feedforward ANN. In this paper, two methods of P pattern L layer ANN learning on n × n RMESH have been presented. One required memory space of O(nL) but conceptually is simpler to develop and the other uses pipelined approach which reduces the memory requirement to O(L). Both of these algorithms take O(PL) time and are optimal for RMESH architecture.
Original language | English |
---|---|
Pages (from-to) | 313-319 |
Number of pages | 7 |
Journal | Future Generation Computer Systems |
Volume | 14 |
Issue number | 5-6 |
DOIs | |
State | Published - Dec 1998 |
Keywords
- Artificial neural networks
- Parallel algorithms
- Reconfigurable mesh algorithms