Finite sample error bound for parzen windows

Peng Zhang, Jing Peng, Norbert Riedel

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations

Abstract

Parzen Windows as a nonparametric method has been applied to a variety of density estimation as well as classification problems. Similar to nearest neighbor methods, Parzen Windows does not involve learning. While it converges to true but unknown probability densities in the asymptotic limit, there is a lack of theoretical analysis on its performance with finite samples. In this paper we establish a finite sample error bound for Parzen Windows. We first show that Parzen Windows is an approximation to regularized least squares (RLS) methods that have been well studied in statistical learning theory. We then derive the finite sample error bound for Parzen Windows, and discuss the properties of the error bound and its relationship to the error bound for RLS. This analysis provides interesting insight to Parzen Windows as well as the nearest neighbor method from the point of view of learning theory. Finally, we provide empirical results on the performance of Parzen Windows and other methods such as nearest neighbors, RLS and SVMs on a number of real data sets. These results corroborate well our theoretical analysis.

Original languageEnglish
Pages925-930
Number of pages6
StatePublished - 2005
Event20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05 - Pittsburgh, PA, United States
Duration: 9 Jul 200513 Jul 2005

Other

Other20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
Country/TerritoryUnited States
CityPittsburgh, PA
Period9/07/0513/07/05

Fingerprint

Dive into the research topics of 'Finite sample error bound for parzen windows'. Together they form a unique fingerprint.

Cite this