First low frequency all-sky search for continuous gravitational wave signals

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalArticleResearchpeer-review

20 Citations (Scopus)

Abstract

In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0×10-10 and +1.5×10-11 Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10-24 and 2×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ∼2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.

Original languageEnglish
Article number042007
JournalPhysical Review D
Volume93
Issue number4
DOIs
StatePublished - 25 Feb 2016

Fingerprint

gravitational waves
sky
low frequencies
frequency ranges
false alarms
cleaning
artifacts
confidence
disturbances
detectors

Cite this

LIGO Scientific Collaboration and Virgo Collaboration. / First low frequency all-sky search for continuous gravitational wave signals. In: Physical Review D. 2016 ; Vol. 93, No. 4.
@article{afb8bfb82fe648dab697ce932cc8db48,
title = "First low frequency all-sky search for continuous gravitational wave signals",
abstract = "In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0×10-10 and +1.5×10-11 Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90{\%} confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10-24 and 2×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ∼2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.",
author = "{LIGO Scientific Collaboration and Virgo Collaboration} and J. Aasi and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and A. Ain and P. Ajith and B. Allen and A. Allocca and Amariutei, {D. V.} and M. Andersen and Anderson, {S. B.} and Anderson, {W. G.} and K. Arai and Araya, {M. C.} and Arceneaux, {C. C.} and Areeda, {J. S.} and N. Arnaud and G. Ashton and Aston, {S. M.} and P. Astone and P. Aufmuth and C. Aulbert and S. Babak and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and F. Barone and B. Barr and L. Barsotti and M. Barsuglia and Marc Favata and Rodica Martin",
year = "2016",
month = "2",
day = "25",
doi = "10.1103/PhysRevD.93.042007",
language = "English",
volume = "93",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "4",

}

LIGO Scientific Collaboration and Virgo Collaboration 2016, 'First low frequency all-sky search for continuous gravitational wave signals', Physical Review D, vol. 93, no. 4, 042007. https://doi.org/10.1103/PhysRevD.93.042007

First low frequency all-sky search for continuous gravitational wave signals. / LIGO Scientific Collaboration and Virgo Collaboration.

In: Physical Review D, Vol. 93, No. 4, 042007, 25.02.2016.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - First low frequency all-sky search for continuous gravitational wave signals

AU - LIGO Scientific Collaboration and Virgo Collaboration

AU - Aasi, J.

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Allocca, A.

AU - Amariutei, D. V.

AU - Andersen, M.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Arai, K.

AU - Araya, M. C.

AU - Arceneaux, C. C.

AU - Areeda, J. S.

AU - Arnaud, N.

AU - Ashton, G.

AU - Aston, S. M.

AU - Astone, P.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Babak, S.

AU - Baker, P. T.

AU - Baldaccini, F.

AU - Ballardin, G.

AU - Ballmer, S. W.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barone, F.

AU - Barr, B.

AU - Barsotti, L.

AU - Barsuglia, M.

AU - Favata, Marc

AU - Martin, Rodica

PY - 2016/2/25

Y1 - 2016/2/25

N2 - In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0×10-10 and +1.5×10-11 Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10-24 and 2×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ∼2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.

AB - In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0×10-10 and +1.5×10-11 Hz/s, and was based on a hierarchical approach. The starting point was a set of short fast Fourier transforms, of length 8192 s, built from the calibrated strain data. Aggressive data cleaning, in both the time and frequency domains, has been done in order to remove, as much as possible, the effect of disturbances of instrumental origin. On each data set a number of candidates has been selected, using the FrequencyHough transform in an incoherent step. Only coincident candidates among VSR2 and VSR4 have been examined in order to strongly reduce the false alarm probability, and the most significant candidates have been selected. The criteria we have used for candidate selection and for the coincidence step greatly reduce the harmful effect of large instrumental artifacts. Selected candidates have been subject to a follow-up by constructing a new set of longer fast Fourier transforms followed by a further incoherent analysis, still based on the FrequencyHough transform. No evidence for continuous gravitational wave signals was found, and therefore we have set a population-based joint VSR2-VSR4 90% confidence level upper limit on the dimensionless gravitational wave strain in the frequency range between 20 and 128 Hz. This is the first all-sky search for continuous gravitational waves conducted, on data of ground-based interferometric detectors, at frequencies below 50 Hz. We set upper limits in the range between about 10-24 and 2×10-23 at most frequencies. Our upper limits on signal strain show an improvement of up to a factor of ∼2 with respect to the results of previous all-sky searches at frequencies below 80 Hz.

UR - http://www.scopus.com/inward/record.url?scp=84960895830&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.93.042007

DO - 10.1103/PhysRevD.93.042007

M3 - Article

VL - 93

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 4

M1 - 042007

ER -