Formation of bromate during ferrate(VI) oxidation of bromide in water

Xin Huang, Yang Deng, Shuang Liu, Yali Song, Nanzhu Li, Jizhi Zhou

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

Ferrate (VI) is traditionally recognized as a safe oxidant without production of disinfection byproducts (DBPs). However, here we detected probable carcinogenic bromate (BrO3-) during ferrate(VI) oxidation of bromide (Br-)-containing water, and evaluated the effects of pH, ferrate(VI) dose, initial Br- concentration, and co-existing anions on the BrO3- formation. BrO3- was produced at a moderately-weakly acidic pH condition and in the absence of phosphate that was commonly applied as a buffer and stabilizing agent in previous ferrate(VI) studies. At pH 5.0, the produced BrO3- was increased from 12.5 to 273.8 μg/L with the increasing initial Br- concentration from 200 to 1000 μg/L at 10 mg/L Fe(VI), corresponding to an increase in the molar conversion ([BrO3-]/initial [Br-]) from 2.3% to 10.3%, in a bicarbonate-buffered solution. As pH increased to 7.0, the BrO3- concentration gradually dropped. The BrO3- production appeared to be associated with the oxidation by high valence iron species (i.e. Fe(VI), Fe(V) and Fe(IV)). Two key intermediate products (i.e. hypobromous acid/hypobromite (HOBr/OBr-) and hydrogen peroxide (H2O2)) relevant to the bromate formation were identified. The production of HOBr, a requisite intermediate for the ensuing bromate formation, was indirectly validated through identification of bromine-containing trihalomethanes and haloacetic acids during ferrate oxidation in a natural water, though these bromo-organic DBPs produced were insignificant. Furthermore, the inhibition effects of various anions on the formation of BrO3- followed chloride < sulfate < silicate < phosphate. More H2O2 was detected at higher phosphate concentration. It could reduce HOBr to Br-, thereby inhibiting the bromate formation.

Original languageEnglish
Pages (from-to)528-533
Number of pages6
JournalChemosphere
Volume155
DOIs
StatePublished - 1 Jul 2016

Keywords

  • Bromate
  • Bromide
  • Chemical oxidation
  • Disinfection byproducts
  • Ferrate(VI)
  • Phosphate

Fingerprint Dive into the research topics of 'Formation of bromate during ferrate(VI) oxidation of bromide in water'. Together they form a unique fingerprint.

  • Cite this