TY - JOUR
T1 - Forward scattering series and seismic events
T2 - Far field approximations, critical and postcritical events
AU - Nita, Bogdan G.
AU - Matson, Kenneth H.
AU - Weglein, Arthur B.
PY - 2004
Y1 - 2004
N2 - Inverse scattering series is the only nonlinear, direct inversion method for the multi-dimensional, acoustic or elastic equation. Recently developed techniques for inverse problems based on the inverse scattering series [Weglein et al., Geophys., 62 (1997), pp. 1975-1989; Top. Rev. Inverse Problems, 19 (2003), pp. R27-R83] were shown to require two mappings, one associating nonperturbative description of seismic events with their forward scattering series description and a second relating the construction of events in the forward to their treatment in the inverse scattering series. This paper extends and further analyzes the first of these two mappings, introduced, for 1D normal incidence, in Matson [J. Seismic Exploration, 5 (1996), pp. 63-78] and later extended to two dimensions in Matson [An Inverse Scattering Series for Attenuating Elastic Multiples from Multicomponent Land and Ocean Bottom Seismic Data, Ph.D. thesis, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada, 1997]. It brings a new and more rigorous understanding of the mathematics and physics underlying the calculation of terms in the forward scattering series and the events in the seismic model. The convergence of the series for 1D acoustic models is examined, and the earlier precritical analysis is extended to critical and postcritical reflections. An explanation is proposed for the divergence of the series for postcritical incident planewaves.
AB - Inverse scattering series is the only nonlinear, direct inversion method for the multi-dimensional, acoustic or elastic equation. Recently developed techniques for inverse problems based on the inverse scattering series [Weglein et al., Geophys., 62 (1997), pp. 1975-1989; Top. Rev. Inverse Problems, 19 (2003), pp. R27-R83] were shown to require two mappings, one associating nonperturbative description of seismic events with their forward scattering series description and a second relating the construction of events in the forward to their treatment in the inverse scattering series. This paper extends and further analyzes the first of these two mappings, introduced, for 1D normal incidence, in Matson [J. Seismic Exploration, 5 (1996), pp. 63-78] and later extended to two dimensions in Matson [An Inverse Scattering Series for Attenuating Elastic Multiples from Multicomponent Land and Ocean Bottom Seismic Data, Ph.D. thesis, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada, 1997]. It brings a new and more rigorous understanding of the mathematics and physics underlying the calculation of terms in the forward scattering series and the events in the seismic model. The convergence of the series for 1D acoustic models is examined, and the earlier precritical analysis is extended to critical and postcritical reflections. An explanation is proposed for the divergence of the series for postcritical incident planewaves.
KW - Critical reflections
KW - Forward problem
KW - Postcritical reflections
KW - Scattering theory
UR - http://www.scopus.com/inward/record.url?scp=11044238393&partnerID=8YFLogxK
U2 - 10.1137/S0036139903435619
DO - 10.1137/S0036139903435619
M3 - Article
AN - SCOPUS:11044238393
SN - 0036-1399
VL - 64
SP - 2167
EP - 2185
JO - SIAM Journal on Applied Mathematics
JF - SIAM Journal on Applied Mathematics
IS - 6
ER -