TY - JOUR
T1 - Global-ocean redox variations across the Smithian-Spathian boundary linked to concurrent climatic and biotic changes
AU - Zhang, Feifei
AU - Algeo, Thomas J.
AU - Cui, Ying
AU - Shen, Jun
AU - Song, Huyue
AU - Sano, Hiroyoshi
AU - Rowe, Harry D.
AU - Anbar, Ariel D.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/8
Y1 - 2019/8
N2 - The Smithian-Spathian boundary (SSB) was an interval characterized by a major global carbon cycle perturbation, climatic cooling from a middle/late Smithian boundary hyperthermal condition, and a major setback in the recovery of marine necto-pelagic faunas from the end-Permian mass extinction. Although the SSB has been linked to changes in oceanic redox conditions, key aspects of this redox variation (e.g., duration, extent, and triggering mechanisms) and its relationship to coeval climatic and biotic changes remain unresolved. Here, we report a high-resolution middle Smithian to middle Spathian U isotope (δ238U) record based on marine carbonates of the Zuodeng (South China) and Jesmond (British Columbia) sections to investigate the timing and global extent of ocean-redox variation across the SSB. Our δ238U record reveals values similar to or slightly heavier than modern seawater (-0.39‰) during the middle Smithian, a rapid negative shift to highly negative values during the early late Smithian, a positive shift at the SSB, and a rapid shift back to more negative values in the early-middle Spathian. A simple U-isotope mass balance modeling suggests that the global area of anoxic seafloor expanded strongly during the late Smithian and the early-middle Spathian (covering ~11% of total seafloor area), but that it contracted sharply during the SSB (~2%). The redox pattern documented by our δ238U record shows a good first-order correspondence to tropical sea-surface temperature (SST) data for the Smithian-Spathian. In particular, peak anoxia coincided with the middle/late Smithian boundary hyperthermal event, and diminished anoxia with a pronounced decline in SSTs at the SSB. The temporal correlation between anoxia and low biodiversity levels of many marine clades (e.g., conodonts and ammonoids) during the late Smithian indicates that oceanic anoxia may have played a role in the SSB biocrisis.
AB - The Smithian-Spathian boundary (SSB) was an interval characterized by a major global carbon cycle perturbation, climatic cooling from a middle/late Smithian boundary hyperthermal condition, and a major setback in the recovery of marine necto-pelagic faunas from the end-Permian mass extinction. Although the SSB has been linked to changes in oceanic redox conditions, key aspects of this redox variation (e.g., duration, extent, and triggering mechanisms) and its relationship to coeval climatic and biotic changes remain unresolved. Here, we report a high-resolution middle Smithian to middle Spathian U isotope (δ238U) record based on marine carbonates of the Zuodeng (South China) and Jesmond (British Columbia) sections to investigate the timing and global extent of ocean-redox variation across the SSB. Our δ238U record reveals values similar to or slightly heavier than modern seawater (-0.39‰) during the middle Smithian, a rapid negative shift to highly negative values during the early late Smithian, a positive shift at the SSB, and a rapid shift back to more negative values in the early-middle Spathian. A simple U-isotope mass balance modeling suggests that the global area of anoxic seafloor expanded strongly during the late Smithian and the early-middle Spathian (covering ~11% of total seafloor area), but that it contracted sharply during the SSB (~2%). The redox pattern documented by our δ238U record shows a good first-order correspondence to tropical sea-surface temperature (SST) data for the Smithian-Spathian. In particular, peak anoxia coincided with the middle/late Smithian boundary hyperthermal event, and diminished anoxia with a pronounced decline in SSTs at the SSB. The temporal correlation between anoxia and low biodiversity levels of many marine clades (e.g., conodonts and ammonoids) during the late Smithian indicates that oceanic anoxia may have played a role in the SSB biocrisis.
KW - British Columbia
KW - Early Triassic
KW - Smithian/Spathian boundary
KW - South China
KW - U isotopes
KW - oceanic anoxia
UR - http://www.scopus.com/inward/record.url?scp=85057622976&partnerID=8YFLogxK
U2 - 10.1016/j.earscirev.2018.10.012
DO - 10.1016/j.earscirev.2018.10.012
M3 - Review article
AN - SCOPUS:85057622976
SN - 0012-8252
VL - 195
SP - 147
EP - 168
JO - Earth-Science Reviews
JF - Earth-Science Reviews
ER -