TY - GEN
T1 - GPU accelerated microarray data analysis using random matrix theory
AU - Ingram, Joey
AU - Zhu, Mengxia
PY - 2011
Y1 - 2011
N2 - Recent advances in high-throughput genomic technology, such as micro arrays, usually produce vast amounts of gene expression data under many experimental conditions. Analyzing such data is often difficult due to the colossal data size and the intensive computing involved. In addition, many existing analysis tools often require the inference of experienced analysts and subjective judgments. In this paper, we developed a parallel approach based on Random Matrix Theory (RMT) to generate transcription networks using Graphical Processing Units (GPUs). Recently, GPUs have been redesigned into a more unified architecture, which has allowed them to be used more readily in general purpose computing. This architectural advancement has resulted in GPUs becoming easily programmable parallel processors with performance that is vastly superior to CPUs. Our GPU-based approach makes automated micro array data analysis faster, more accurate and noise resistant without engaging remote high performance computing facilities, such as a cluster or supercomputer. The implementation moves some computationally intensive tasks, such as the calculations of Pearson correlation coefficients, tridiagonal reduction, back transformation of eigenvectors, and orthogonal rotation, to the GPU. Experimental results on real micro array datasets show that our GPU implementation runs faster than a CPU version using highly optimized LAPACK routines. The runtime speedup gets higher as the number of genes and sample points in a micro array dataset increases.
AB - Recent advances in high-throughput genomic technology, such as micro arrays, usually produce vast amounts of gene expression data under many experimental conditions. Analyzing such data is often difficult due to the colossal data size and the intensive computing involved. In addition, many existing analysis tools often require the inference of experienced analysts and subjective judgments. In this paper, we developed a parallel approach based on Random Matrix Theory (RMT) to generate transcription networks using Graphical Processing Units (GPUs). Recently, GPUs have been redesigned into a more unified architecture, which has allowed them to be used more readily in general purpose computing. This architectural advancement has resulted in GPUs becoming easily programmable parallel processors with performance that is vastly superior to CPUs. Our GPU-based approach makes automated micro array data analysis faster, more accurate and noise resistant without engaging remote high performance computing facilities, such as a cluster or supercomputer. The implementation moves some computationally intensive tasks, such as the calculations of Pearson correlation coefficients, tridiagonal reduction, back transformation of eigenvectors, and orthogonal rotation, to the GPU. Experimental results on real micro array datasets show that our GPU implementation runs faster than a CPU version using highly optimized LAPACK routines. The runtime speedup gets higher as the number of genes and sample points in a micro array dataset increases.
UR - http://www.scopus.com/inward/record.url?scp=81555213263&partnerID=8YFLogxK
U2 - 10.1109/HPCC.2011.119
DO - 10.1109/HPCC.2011.119
M3 - Conference contribution
AN - SCOPUS:81555213263
SN - 9780769545387
T3 - Proc.- 2011 IEEE International Conference on HPCC 2011 - 2011 IEEE International Workshop on FTDCS 2011 -Workshops of the 2011 Int. Conf. on UIC 2011- Workshops of the 2011 Int. Conf. ATC 2011
SP - 839
EP - 844
BT - Proc.- 2011 IEEE International Conference on HPCC 2011 - 2011 IEEE International Workshop on FTDCS 2011 - Workshops of the 2011 Int. Conf. on UIC 2011- Workshops of the 2011 Int. Conf. ATC 2011
T2 - 13th IEEE International Workshop on FTDCS 2011, the 8th International Conference on ATC 2011, the 8th International Conference on UIC 2011 and the 13th IEEE International Conference on HPCC 2011
Y2 - 2 September 2011 through 4 September 2011
ER -