GPU accelerated microarray data analysis using random matrix theory

Joey Ingram, Mengxia Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Recent advances in high-throughput genomic technology, such as micro arrays, usually produce vast amounts of gene expression data under many experimental conditions. Analyzing such data is often difficult due to the colossal data size and the intensive computing involved. In addition, many existing analysis tools often require the inference of experienced analysts and subjective judgments. In this paper, we developed a parallel approach based on Random Matrix Theory (RMT) to generate transcription networks using Graphical Processing Units (GPUs). Recently, GPUs have been redesigned into a more unified architecture, which has allowed them to be used more readily in general purpose computing. This architectural advancement has resulted in GPUs becoming easily programmable parallel processors with performance that is vastly superior to CPUs. Our GPU-based approach makes automated micro array data analysis faster, more accurate and noise resistant without engaging remote high performance computing facilities, such as a cluster or supercomputer. The implementation moves some computationally intensive tasks, such as the calculations of Pearson correlation coefficients, tridiagonal reduction, back transformation of eigenvectors, and orthogonal rotation, to the GPU. Experimental results on real micro array datasets show that our GPU implementation runs faster than a CPU version using highly optimized LAPACK routines. The runtime speedup gets higher as the number of genes and sample points in a micro array dataset increases.

Original languageEnglish
Title of host publicationProc.- 2011 IEEE International Conference on HPCC 2011 - 2011 IEEE International Workshop on FTDCS 2011 - Workshops of the 2011 Int. Conf. on UIC 2011- Workshops of the 2011 Int. Conf. ATC 2011
Pages839-844
Number of pages6
DOIs
StatePublished - 24 Nov 2011
Event13th IEEE International Workshop on FTDCS 2011, the 8th International Conference on ATC 2011, the 8th International Conference on UIC 2011 and the 13th IEEE International Conference on HPCC 2011 - Banff, AB, Canada
Duration: 2 Sep 20114 Sep 2011

Publication series

NameProc.- 2011 IEEE International Conference on HPCC 2011 - 2011 IEEE International Workshop on FTDCS 2011 -Workshops of the 2011 Int. Conf. on UIC 2011- Workshops of the 2011 Int. Conf. ATC 2011

Other

Other13th IEEE International Workshop on FTDCS 2011, the 8th International Conference on ATC 2011, the 8th International Conference on UIC 2011 and the 13th IEEE International Conference on HPCC 2011
CountryCanada
CityBanff, AB
Period2/09/114/09/11

Fingerprint Dive into the research topics of 'GPU accelerated microarray data analysis using random matrix theory'. Together they form a unique fingerprint.

  • Cite this

    Ingram, J., & Zhu, M. (2011). GPU accelerated microarray data analysis using random matrix theory. In Proc.- 2011 IEEE International Conference on HPCC 2011 - 2011 IEEE International Workshop on FTDCS 2011 - Workshops of the 2011 Int. Conf. on UIC 2011- Workshops of the 2011 Int. Conf. ATC 2011 (pp. 839-844). [6063085] (Proc.- 2011 IEEE International Conference on HPCC 2011 - 2011 IEEE International Workshop on FTDCS 2011 -Workshops of the 2011 Int. Conf. on UIC 2011- Workshops of the 2011 Int. Conf. ATC 2011). https://doi.org/10.1109/HPCC.2011.119