Granular activated carbon (GAC) adsorption of two algal odorants, dimethyl trisulfide and β-cyclocitral

Ke jia Zhang, Nai yun Gao, Yang Deng, Ming hao Shui, Yu lin Tang

Research output: Contribution to journalArticle

31 Scopus citations

Abstract

This study was to investigate granular activated carbon (GAC) adsorption of two algal odorants in water, dimethyl trisulfide and β-cyclocitral. Among the four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich), Freundlich isotherm showed the best fitting with the equilibrium data in terms of the coefficient of determination (R2) and Chi-square (x2). Based on the parameters determined in the Freundlich isotherm equations for GAC adsorption of a single odorant, we successfully predicted the GAC adsorption behavior in a bisolute solution using the Ideal Solution Adsorption (IAS) model. In the kinetics study of the two odorants adsorption by GAC, pseudo first-order and pseudo second-order kinetic models both well fit the experimental data. The calculated Gibbs free-energy changes for GAC adsorption of dimethyl trisulfide and β-cyclocitral were -3.61 and -4.24kJ/mol at 298K, respectively. The pH effects on GAC adsorption of dimethyl trisulfide and β-cyclocitral were different. Alkaline condition (pH >10) favored GAC adsorption of dimethyl trisulfide, however, adsorption of the β-cyclocitral was not significantly influenced by pH (2-13). The presence of natural organic matter (NOM) hindered adsorption of dimethyl trisulfide and β-cyclocitral to different degrees. Low molecular weight NOM fractions (particularly <1000) showed the significant inhibiting effect in the GAC adsorption.

Original languageEnglish
Pages (from-to)231-237
Number of pages7
JournalDesalination
Volume266
Issue number1-3
DOIs
StatePublished - 31 Jan 2011

Keywords

  • Adsorption isotherms
  • Dimethyl trisulfide
  • Granular activated carbon (GAC)
  • Natural organic matter (NOM)
  • β-Cyclocitral

Fingerprint Dive into the research topics of 'Granular activated carbon (GAC) adsorption of two algal odorants, dimethyl trisulfide and β-cyclocitral'. Together they form a unique fingerprint.

  • Cite this