TY - JOUR
T1 - Granular activated carbon (GAC) adsorption of two algal odorants, dimethyl trisulfide and β-cyclocitral
AU - Zhang, Ke jia
AU - Gao, Nai yun
AU - Deng, Yang
AU - Shui, Ming hao
AU - Tang, Yu lin
PY - 2011/1/31
Y1 - 2011/1/31
N2 - This study was to investigate granular activated carbon (GAC) adsorption of two algal odorants in water, dimethyl trisulfide and β-cyclocitral. Among the four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich), Freundlich isotherm showed the best fitting with the equilibrium data in terms of the coefficient of determination (R2) and Chi-square (x2). Based on the parameters determined in the Freundlich isotherm equations for GAC adsorption of a single odorant, we successfully predicted the GAC adsorption behavior in a bisolute solution using the Ideal Solution Adsorption (IAS) model. In the kinetics study of the two odorants adsorption by GAC, pseudo first-order and pseudo second-order kinetic models both well fit the experimental data. The calculated Gibbs free-energy changes for GAC adsorption of dimethyl trisulfide and β-cyclocitral were -3.61 and -4.24kJ/mol at 298K, respectively. The pH effects on GAC adsorption of dimethyl trisulfide and β-cyclocitral were different. Alkaline condition (pH >10) favored GAC adsorption of dimethyl trisulfide, however, adsorption of the β-cyclocitral was not significantly influenced by pH (2-13). The presence of natural organic matter (NOM) hindered adsorption of dimethyl trisulfide and β-cyclocitral to different degrees. Low molecular weight NOM fractions (particularly <1000) showed the significant inhibiting effect in the GAC adsorption.
AB - This study was to investigate granular activated carbon (GAC) adsorption of two algal odorants in water, dimethyl trisulfide and β-cyclocitral. Among the four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich), Freundlich isotherm showed the best fitting with the equilibrium data in terms of the coefficient of determination (R2) and Chi-square (x2). Based on the parameters determined in the Freundlich isotherm equations for GAC adsorption of a single odorant, we successfully predicted the GAC adsorption behavior in a bisolute solution using the Ideal Solution Adsorption (IAS) model. In the kinetics study of the two odorants adsorption by GAC, pseudo first-order and pseudo second-order kinetic models both well fit the experimental data. The calculated Gibbs free-energy changes for GAC adsorption of dimethyl trisulfide and β-cyclocitral were -3.61 and -4.24kJ/mol at 298K, respectively. The pH effects on GAC adsorption of dimethyl trisulfide and β-cyclocitral were different. Alkaline condition (pH >10) favored GAC adsorption of dimethyl trisulfide, however, adsorption of the β-cyclocitral was not significantly influenced by pH (2-13). The presence of natural organic matter (NOM) hindered adsorption of dimethyl trisulfide and β-cyclocitral to different degrees. Low molecular weight NOM fractions (particularly <1000) showed the significant inhibiting effect in the GAC adsorption.
KW - Adsorption isotherms
KW - Dimethyl trisulfide
KW - Granular activated carbon (GAC)
KW - Natural organic matter (NOM)
KW - β-Cyclocitral
UR - http://www.scopus.com/inward/record.url?scp=78649649946&partnerID=8YFLogxK
U2 - 10.1016/j.desal.2010.08.031
DO - 10.1016/j.desal.2010.08.031
M3 - Article
AN - SCOPUS:78649649946
SN - 0011-9164
VL - 266
SP - 231
EP - 237
JO - Desalination
JF - Desalination
IS - 1-3
ER -