GW151226

Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalArticleResearchpeer-review

1480 Citations (Scopus)

Abstract

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4-0.9+0.7×10-22. The inferred source-frame initial black hole masses are 14.2-3.7+8.3M and 7.5-2.3+2.3M, and the final black hole mass is 20.8-1.7+6.1M. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440-190+180 Mpc corresponding to a redshift of 0.09-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

Original languageEnglish
Article number241103
JournalPhysical Review Letters
Volume116
Issue number24
DOIs
StatePublished - 15 Jun 2016

Fingerprint

gravitational waves
coalescing
LIGO (observatory)
matched filters
stellar mass
relativity
signal to noise ratios
luminosity
intervals
deviation
cycles
detectors

Cite this

LIGO Scientific Collaboration and Virgo Collaboration. / GW151226 : Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. In: Physical Review Letters. 2016 ; Vol. 116, No. 24.
@article{11f639e53d5045c3ba0f3c1e7390c9f5,
title = "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence",
abstract = "We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4-0.9+0.7×10-22. The inferred source-frame initial black hole masses are 14.2-3.7+8.3M and 7.5-2.3+2.3M, and the final black hole mass is 20.8-1.7+6.1M. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440-190+180 Mpc corresponding to a redshift of 0.09-0.04+0.03. All uncertainties define a 90{\%} credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.",
author = "{LIGO Scientific Collaboration and Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and B. Allen and A. Allocca and Altin, {P. A.} and Anderson, {S. B.} and Anderson, {W. G.} and K. Arai and Araya, {M. C.} and Arceneaux, {C. C.} and Areeda, {J. S.} and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and M. Ast and Aston, {S. M.} and P. Astone and P. Aufmuth and C. Aulbert and S. Babak and P. Bacon and Bader, {M. K.M.} and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and F. Barone and Marc Favata",
year = "2016",
month = "6",
day = "15",
doi = "10.1103/PhysRevLett.116.241103",
language = "English",
volume = "116",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "24",

}

GW151226 : Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. / LIGO Scientific Collaboration and Virgo Collaboration.

In: Physical Review Letters, Vol. 116, No. 24, 241103, 15.06.2016.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - GW151226

T2 - Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

AU - LIGO Scientific Collaboration and Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Allocca, A.

AU - Altin, P. A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Arai, K.

AU - Araya, M. C.

AU - Arceneaux, C. C.

AU - Areeda, J. S.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Ast, M.

AU - Aston, S. M.

AU - Astone, P.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Babak, S.

AU - Bacon, P.

AU - Bader, M. K.M.

AU - Baker, P. T.

AU - Baldaccini, F.

AU - Ballardin, G.

AU - Ballmer, S. W.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barone, F.

AU - Favata, Marc

PY - 2016/6/15

Y1 - 2016/6/15

N2 - We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4-0.9+0.7×10-22. The inferred source-frame initial black hole masses are 14.2-3.7+8.3M and 7.5-2.3+2.3M, and the final black hole mass is 20.8-1.7+6.1M. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440-190+180 Mpc corresponding to a redshift of 0.09-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

AB - We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4-0.9+0.7×10-22. The inferred source-frame initial black hole masses are 14.2-3.7+8.3M and 7.5-2.3+2.3M, and the final black hole mass is 20.8-1.7+6.1M. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440-190+180 Mpc corresponding to a redshift of 0.09-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

UR - http://www.scopus.com/inward/record.url?scp=84975517093&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.116.241103

DO - 10.1103/PhysRevLett.116.241103

M3 - Article

VL - 116

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 24

M1 - 241103

ER -