GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

(LIGO Scientific and Virgo Collaboration)

Research output: Contribution to journalArticle

1116 Citations (Scopus)

Abstract

We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M' and 19.4-5.9+5.3M (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.12-0.30+0.21. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880-390+450 Mpc corresponding to a redshift of z=0.18-0.07+0.08. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10-23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.

Original languageEnglish
Article number221101
JournalPhysical Review Letters
Volume118
Issue number22
DOIs
StatePublished - 1 Jun 2017

Fingerprint

coalescing
gravitons
gravitational waves
relativity
orbitals
LIGO (observatory)
wave dispersion
false alarms
stellar mass
signal to noise ratios
angular momentum
luminosity
vacuum
detectors
configurations

Cite this

(LIGO Scientific and Virgo Collaboration). / GW170104 : Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. In: Physical Review Letters. 2017 ; Vol. 118, No. 22.
@article{2e4bcbb3ea3f4927988a7ba37a92427f,
title = "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2",
abstract = "We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M' and 19.4-5.9+5.3M (at the 90{\%} credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.12-0.30+0.21. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880-390+450 Mpc corresponding to a redshift of z=0.18-0.07+0.08. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10-23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.",
author = "{(LIGO Scientific and Virgo Collaboration)} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Afrough and B. Agarwal and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and B. Allen and G. Allen and A. Allocca and Altin, {P. A.} and A. Amato and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and M. Ast and Aston, {S. M.} and P. Astone and P. Aufmuth and C. Aulbert and K. Aultoneal and A. Avila-Alvarez and S. Babak and P. Bacon and Bader, {M. K.M.} and S. Bae and Baker, {P. T.} and F. Baldaccini",
year = "2017",
month = "6",
day = "1",
doi = "10.1103/PhysRevLett.118.221101",
language = "English",
volume = "118",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "22",

}

GW170104 : Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. / (LIGO Scientific and Virgo Collaboration).

In: Physical Review Letters, Vol. 118, No. 22, 221101, 01.06.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - GW170104

T2 - Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

AU - (LIGO Scientific and Virgo Collaboration)

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Afrough, M.

AU - Agarwal, B.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Allen, G.

AU - Allocca, A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Ast, M.

AU - Aston, S. M.

AU - Astone, P.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Aultoneal, K.

AU - Avila-Alvarez, A.

AU - Babak, S.

AU - Bacon, P.

AU - Bader, M. K.M.

AU - Bae, S.

AU - Baker, P. T.

AU - Baldaccini, F.

PY - 2017/6/1

Y1 - 2017/6/1

N2 - We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M' and 19.4-5.9+5.3M (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.12-0.30+0.21. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880-390+450 Mpc corresponding to a redshift of z=0.18-0.07+0.08. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10-23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.

AB - We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M' and 19.4-5.9+5.3M (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.12-0.30+0.21. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880-390+450 Mpc corresponding to a redshift of z=0.18-0.07+0.08. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10-23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.

UR - http://www.scopus.com/inward/record.url?scp=85020048154&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.118.221101

DO - 10.1103/PhysRevLett.118.221101

M3 - Article

C2 - 28621973

AN - SCOPUS:85020048154

VL - 118

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 22

M1 - 221101

ER -