GW170817

Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalArticleResearchpeer-review

35 Citations (Scopus)

Abstract

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 Hz)=1.8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f=25 Hz)=1.1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

Original languageEnglish
Article number091101
JournalPhysical Review Letters
Volume120
Issue number9
DOIs
StatePublished - 28 Feb 2018

Fingerprint

gravitational waves
coalescing
LIGO (observatory)
neutron stars
binary stars
astrophysics
confidence
signal to noise ratios
sensitivity

Cite this

LIGO Scientific Collaboration and Virgo Collaboration. / GW170817 : Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. In: Physical Review Letters. 2018 ; Vol. 120, No. 9.
@article{157efa18002f45b19ca1808c76a6c6bb,
title = "GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences",
abstract = "The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 Hz)=1.8-1.3+2.7×10-9 with 90{\%} confidence, compared with ΩGW(f=25 Hz)=1.1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.",
author = "{LIGO Scientific Collaboration and Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Afrough and B. Agarwal and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and B. Allen and G. Allen and A. Allocca and Altin, {P. A.} and A. Amato and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and Angelova, {S. V.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and M. Ast and Aston, {S. M.} and P. Astone and Atallah, {D. V.} and P. Aufmuth and C. Aulbert and K. Aultoneal and C. Austin and A. Avila-Alvarez and S. Babak and Marc Favata and Rodica Martin",
year = "2018",
month = "2",
day = "28",
doi = "10.1103/PhysRevLett.120.091101",
language = "English",
volume = "120",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "9",

}

GW170817 : Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. / LIGO Scientific Collaboration and Virgo Collaboration.

In: Physical Review Letters, Vol. 120, No. 9, 091101, 28.02.2018.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - GW170817

T2 - Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

AU - LIGO Scientific Collaboration and Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Afrough, M.

AU - Agarwal, B.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Allen, G.

AU - Allocca, A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Ast, M.

AU - Aston, S. M.

AU - Astone, P.

AU - Atallah, D. V.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Aultoneal, K.

AU - Austin, C.

AU - Avila-Alvarez, A.

AU - Babak, S.

AU - Favata, Marc

AU - Martin, Rodica

PY - 2018/2/28

Y1 - 2018/2/28

N2 - The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 Hz)=1.8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f=25 Hz)=1.1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

AB - The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 Hz)=1.8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f=25 Hz)=1.1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

UR - http://www.scopus.com/inward/record.url?scp=85043247385&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.120.091101

DO - 10.1103/PhysRevLett.120.091101

M3 - Article

VL - 120

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 9

M1 - 091101

ER -