TY - JOUR

T1 - Integrating math and science content through covariational reasoning

T2 - the case of gravity

AU - Panorkou, Nicole

AU - Germia, Erell Feb

PY - 2020

Y1 - 2020

N2 - Integrating mathematics content into science usually plays a supporting role, where students use their existing mathematical knowledge for solving science tasks without exhibiting any new mathematical meanings during the process. To help students explore the reciprocal relationship between math and science, we designed an instructional module that prompted them to reason covariationally about the quantities involved in the phenomenon of the gravitational force. The results of a whole-class design experiment with sixth-grade students showed that covariational reasoning supported students’ understanding of the phenomenon of gravity. Also, the examination of the phenomenon of gravity provided a constructive space for students to construct meanings about co-varying quantities. Specifically, students reasoned about the change in the magnitudes and values of mass, distance, and gravity as those changed simultaneously as well as the multiplicative change of these quantities as they changed in relation to each other. They also reasoned multivariationally illustrating that they coordinated mass and distance working together to define the gravitational force. Their interactions with the design, which included the tool, tasks, representations, and questioning, showed to be a structuring factor in the formation and reorganization of meanings that students exhibited. Thus, this study illustrates the type of design activity that provided a constructive space for students’ forms of covariational reasoning in the context of gravity. This design can be used to develop other STEM modules that integrate scientific phenomena with covariational reasoning through technology.

AB - Integrating mathematics content into science usually plays a supporting role, where students use their existing mathematical knowledge for solving science tasks without exhibiting any new mathematical meanings during the process. To help students explore the reciprocal relationship between math and science, we designed an instructional module that prompted them to reason covariationally about the quantities involved in the phenomenon of the gravitational force. The results of a whole-class design experiment with sixth-grade students showed that covariational reasoning supported students’ understanding of the phenomenon of gravity. Also, the examination of the phenomenon of gravity provided a constructive space for students to construct meanings about co-varying quantities. Specifically, students reasoned about the change in the magnitudes and values of mass, distance, and gravity as those changed simultaneously as well as the multiplicative change of these quantities as they changed in relation to each other. They also reasoned multivariationally illustrating that they coordinated mass and distance working together to define the gravitational force. Their interactions with the design, which included the tool, tasks, representations, and questioning, showed to be a structuring factor in the formation and reorganization of meanings that students exhibited. Thus, this study illustrates the type of design activity that provided a constructive space for students’ forms of covariational reasoning in the context of gravity. This design can be used to develop other STEM modules that integrate scientific phenomena with covariational reasoning through technology.

KW - Covariational reasoning

KW - design experiment

KW - gravity

KW - quantitative reasoning

KW - STEM integration

KW - technology

UR - http://www.scopus.com/inward/record.url?scp=85091177980&partnerID=8YFLogxK

U2 - 10.1080/10986065.2020.1814977

DO - 10.1080/10986065.2020.1814977

M3 - Article

AN - SCOPUS:85091177980

SN - 1098-6065

JO - Mathematical Thinking and Learning

JF - Mathematical Thinking and Learning

ER -