Integration of Digital Twin and Federated Learning for Securing Vehicular Internet of Things

Deepti Gupta, Shafika Showkat Moni, Ali Saman Tosun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

In the present era of advanced technology, the Internet of Things (IoT) plays a crucial role in enabling smart connected environments. This includes various domains such as smart homes, smart healthcare, smart cities, smart vehicles, and many others. The IoT facilitates the integration and interconnection of devices, enabling them to communicate, share data, and work together to create intelligent and efficient systems. With ubiquitous smart connected devices and systems, a large amount of data associated with them is at a prime risk from malicious entities (e.g., users, devices, applications) in these systems. Innovative technologies, including cloud computing, Machine Learning (ML), and data analytics, support the development of anomaly detection models for the Vehicular Internet of Things (V-IoT), which encompasses collaborative automatic driving and enhanced transportation systems. However, traditional centralized anomaly detection models fail to provide better services for connected vehicles due to issues such as high latency, privacy leakage, performance overhead, and model drift. Recently, Federated Learning (FL) has gained significant recognition for its ability to address data privacy concerns in the IoT domain. In the context of V-IoT, which involves autonomous vehicles and intelligent transportation systems with connected vehicles communicating with various sensors and devices, FL is used to develop an anomaly detection model. Current technology, the Digital Twin (DT), proves beneficial in addressing uncertain crises and data security issues by creating a virtual replica that simulates various factors, including traffic trajectories, city policies, and vehicle utilization. This enables the system to facilitate efficient and inclusive decision-making. However, the effectiveness of a V-IoT DT system heavily relies on the collection of long-term and high-quality data to make appropriate decisions. Consequently, its advantages may be limited when confronted with urgent crises like the COVID-19 pandemic. This paper introduces a Hierarchical Federated Learning (HFL) based anomaly detection model for V-IoT, aiming to enhance the accuracy of the model. Our proposed model integrates both DT and HFL approaches to create a comprehensive system for detecting malicious activities using an anomaly detection model. Additionally, real-world V-IoT use case scenarios are presented to demonstrate the application of the proposed model.

Original languageEnglish
Title of host publication2023 Research in Adaptive and Convergent Systems RACS 2023
PublisherAssociation for Computing Machinery, Inc
ISBN (Electronic)9798400702280
DOIs
StatePublished - 6 Aug 2023
Event2023 Research in Adaptive and Convergent Systems, RACS 2023 - Gdansk, Poland
Duration: 6 Aug 202310 Aug 2023

Publication series

Name2023 Research in Adaptive and Convergent Systems RACS 2023

Conference

Conference2023 Research in Adaptive and Convergent Systems, RACS 2023
Country/TerritoryPoland
CityGdansk
Period6/08/2310/08/23

Keywords

  • Anomaly Detection Model
  • Digital Twin
  • Hierarchical Federated Learning
  • Vehicular Internet of Things

Fingerprint

Dive into the research topics of 'Integration of Digital Twin and Federated Learning for Securing Vehicular Internet of Things'. Together they form a unique fingerprint.

Cite this