Interacting nanoscale magnetic superatom cluster arrays in molybdenum oxide bronzes

Joseph A. Hagmann, Son T. Le, Lynn F. Schneemeyer, Joseph A. Stroscio, Tiglet Besara, Jifeng Sun, David J. Singh, Theo Siegrist, David G. Seiler, Curt A. Richter

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


In this study, we examine several reduced ternary molybdates in the family of yellow rare earth molybdenum bronzes produced by electrochemical synthesis with composition LnMo16O44. These compounds contain an array of electrically isolated but magnetically interacting multi-atom clusters with composition Mo8O36. These arrayed superatom clusters support a single hole shared among the eight molybdenum atoms in the unit, corresponding to a net spin moment of 1μB, and exhibit magnetic exchange between the units via the MoO4 tetrahedra (containing Mo6+ ions) and the LnO8 cubes (containing Ln3+ ions). The findings presented here expand on the physics of the unusual collective properties of multi-atom clusters and extend the discussion of such assemblages to the rich structural chemistry of molybdenum bronzes.

Original languageEnglish
Pages (from-to)7922-7929
Number of pages8
Issue number23
StatePublished - 21 Jun 2017


Dive into the research topics of 'Interacting nanoscale magnetic superatom cluster arrays in molybdenum oxide bronzes'. Together they form a unique fingerprint.

Cite this