TY - JOUR
T1 - Isolation and characterization of mutants of Arabidopsis thaliana with increased resistance to growth inhibition by indoleacetic acid-amino acid conjugates
AU - Campanella, James J.
AU - Ludwig-Mueller, Jutta
AU - Town, Christopher D.
PY - 1996/10
Y1 - 1996/10
N2 - Two mutants of Arabidopsis thaliana that are resistant to growth inhibition by indole-3-acetic acid (IAA)-phenylalanine have been isolated. Both mutants were 2- to 3-fold more resistant than wild type to inhibition by IAA-phenylalanine, IAA-alanine, and IAA-glycine in root growth assays. The mutant icr1 (but not icr2) also shows some resistance to IAA-aspartate. Studies using 3H-labeled IAA-phenylalanine showed that the uptake of conjugate from the medium by icr1 was the same as wild type and was reduced by about 25% in icr2. No differences in hydrolysis of the exogenous conjugate were detected between the mutants and their wild-type parents. There was no significant metabolism of the IAA released from the [3H]IAA-phenylalanine, whereas exogenous [3H]IAA was rapidly metabolized to two unidentified products considerably more polar than IAA. Analysis of a cross between icr1 and icr2 indicated that these mutations were at distinct loci and that their effects were additive, and preliminary mapping data indicated that icr1 and icr2 were located at the top and bottom of chromosome V, respectively.
AB - Two mutants of Arabidopsis thaliana that are resistant to growth inhibition by indole-3-acetic acid (IAA)-phenylalanine have been isolated. Both mutants were 2- to 3-fold more resistant than wild type to inhibition by IAA-phenylalanine, IAA-alanine, and IAA-glycine in root growth assays. The mutant icr1 (but not icr2) also shows some resistance to IAA-aspartate. Studies using 3H-labeled IAA-phenylalanine showed that the uptake of conjugate from the medium by icr1 was the same as wild type and was reduced by about 25% in icr2. No differences in hydrolysis of the exogenous conjugate were detected between the mutants and their wild-type parents. There was no significant metabolism of the IAA released from the [3H]IAA-phenylalanine, whereas exogenous [3H]IAA was rapidly metabolized to two unidentified products considerably more polar than IAA. Analysis of a cross between icr1 and icr2 indicated that these mutations were at distinct loci and that their effects were additive, and preliminary mapping data indicated that icr1 and icr2 were located at the top and bottom of chromosome V, respectively.
UR - http://www.scopus.com/inward/record.url?scp=0030267846&partnerID=8YFLogxK
U2 - 10.1104/pp.112.2.735
DO - 10.1104/pp.112.2.735
M3 - Article
C2 - 8883385
AN - SCOPUS:0030267846
SN - 0032-0889
VL - 112
SP - 735
EP - 745
JO - Plant Physiology
JF - Plant Physiology
IS - 2
ER -