Abstract
Synchrotron X-ray microfluorescence and X-ray absorption near-edge microstructure spectroscopy techniques were applied to Typha latifolia (cattail) root sections and rhizosphere soils collected from a brownfield site in New Jersey to investigate lead (Pb) accumulation in T. latifolia roots and the role of iron (Fe) plaque in controlling Pb uptake. We found that Pb and Fe spatial distribution patterns in the root tissues are similar with both metals present at high concentrations mainly in the epidermis and at low concentrations in the vascular tissue (xylem and phloem), and the major Pb and Fe species in T. latifolia root are Pb(II) and Fe(III) regardless of concentration levels. The sequestration of Pb by T. latifolia roots suggests a potential low-cost remediation method (phytostabilization) to manage Pb-contaminated sediments for brownfield remediation while performing wetland rehabilitation.
Original language | English |
---|---|
Pages (from-to) | 3743-3750 |
Number of pages | 8 |
Journal | Environmental Science and Pollution Research |
Volume | 20 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2013 |
Keywords
- Brownfield
- Iron plaque
- Lead contamination
- Synchrotron technique
- Typha latifolia
- Wetland plant