TY - JOUR
T1 - Metal contamination and filtering in soil from an iron (magnetite) mine-smelter complex in the critical Hudson Highlands watershed, New York
AU - Gilchrist, Sivajini
AU - Gates, Alexander E.
AU - Gorring, Matthew
AU - Elzinga, Evert Jan
PY - 2011/7
Y1 - 2011/7
N2 - Organic material in metal contaminated soils around an abandoned magnetite mine-smelter complex in the critical Highlands watershed protects the groundwater and surface water from contamination. Metals in these waters were consistently below local and national water standards. Two groups of soil types cover the area: (1) Group A disturbed metal-rich soils, and (2) Group B undisturbed organic soils. Chromium and nickel were more elevated than other metals with Cr more widespread than Ni. In Group A, Cr correlated strongly with sesquioxides in the lower horizons (Fe2O3: r = 0.74, p < 0.025; Al2O3: r = 0.92, p < 0.005). In Group B, Cr correlated strongly (r = 0.96, p < 0.005) with soil organic matter (SOM) in the O-horizons. Ni-Cr (Group A: 52 and 70% in O- and lower horizons, respectively; Group B: ~100% in both horizons) and V-Cr correlations (78% only in Group A lower horizons) suggest similar retention mechanisms for these elements. Average soil pHCaCl2or both groups ranged between 3.65 and 5.91, suggesting that soil acidity is determined by organic acids and solubility of Al3+ releasing H+ ions. SOM and sesquioxides contribute significantly to creating naturally occurring filtration systems, removing metals, and protecting water quality. High Ca, Fe, and Ti in Group A soils suggest slag and ash were mixed into the soils. Some low-Cr sources include magnetite, slag, and ash (100, 100 and 200 mg/kg, respectively). Constant ZrO2:TiO2 ratios in the lower soils indicate soil formation from breakdown of underlying tailing rocks, contributing Cr to these layers.
AB - Organic material in metal contaminated soils around an abandoned magnetite mine-smelter complex in the critical Highlands watershed protects the groundwater and surface water from contamination. Metals in these waters were consistently below local and national water standards. Two groups of soil types cover the area: (1) Group A disturbed metal-rich soils, and (2) Group B undisturbed organic soils. Chromium and nickel were more elevated than other metals with Cr more widespread than Ni. In Group A, Cr correlated strongly with sesquioxides in the lower horizons (Fe2O3: r = 0.74, p < 0.025; Al2O3: r = 0.92, p < 0.005). In Group B, Cr correlated strongly (r = 0.96, p < 0.005) with soil organic matter (SOM) in the O-horizons. Ni-Cr (Group A: 52 and 70% in O- and lower horizons, respectively; Group B: ~100% in both horizons) and V-Cr correlations (78% only in Group A lower horizons) suggest similar retention mechanisms for these elements. Average soil pHCaCl2or both groups ranged between 3.65 and 5.91, suggesting that soil acidity is determined by organic acids and solubility of Al3+ releasing H+ ions. SOM and sesquioxides contribute significantly to creating naturally occurring filtration systems, removing metals, and protecting water quality. High Ca, Fe, and Ti in Group A soils suggest slag and ash were mixed into the soils. Some low-Cr sources include magnetite, slag, and ash (100, 100 and 200 mg/kg, respectively). Constant ZrO2:TiO2 ratios in the lower soils indicate soil formation from breakdown of underlying tailing rocks, contributing Cr to these layers.
KW - Ash
KW - Chromium
KW - Metal contamination
KW - Slag
KW - Soil organic matter
UR - http://www.scopus.com/inward/record.url?scp=79958238873&partnerID=8YFLogxK
U2 - 10.1007/s12665-010-0779-9
DO - 10.1007/s12665-010-0779-9
M3 - Article
AN - SCOPUS:79958238873
SN - 1866-6280
VL - 63
SP - 1029
EP - 1041
JO - Environmental Earth Sciences
JF - Environmental Earth Sciences
IS - 5
ER -