TY - JOUR
T1 - Microvascular Reactivity Is Greater Following Blood Flow Restriction Resistance Exercise Compared with Traditional Resistance Exercise
AU - Perlet, Michael R.
AU - Hosick, Peter A.
AU - Licameli, Nicholas
AU - Matthews, Evan
N1 - Publisher Copyright:
© 2024 National Strength and Conditioning Association.
PY - 2024
Y1 - 2024
N2 - Perlet, MR, Hosick, PA, Licameli, N, and Matthews, EL. Microvascular reactivity is greater following blood flow restriction resistance exercise compared with traditional resistance exercise. J Strength Cond Res XX(X): 000-000, 2024 - Chronic blood flow restriction (BFR) resistance exercise can improve muscular strength, hypertrophy, and microvasculature function, but the acute microvascular effects are unknown. We aimed to test the effects of acute BFR resistance exercise on postexercise microvascular reactivity in an exercising muscle and nonexercising muscle compared with traditional resistance exercise (TRE). Twenty-five adults (men = 14, women = 11, age: 22 ± 3 years, body mass: 71.69 ± 14.49 kg, height: 170 ± 10 cm) completed barbell back squat 1-repetition maximum (1RM) testing followed by 2 randomized and counterbalanced resistance exercise visits separated by ≥48 hours. The 2 visits involved either BFR (4 sets of 30-15-15-15 repetitions at 30% 1RM, with 60-second rest intervals) or TRE (4 sets of 10 repetitions at 70% 1RM, 60-second rest intervals). During each exercise visit, a pre- and postbarbell back squat vascular occlusion test was performed using near-infrared spectroscopy to measure skeletal muscle oxygen (SmO2) in the vastus lateralis (VL) and flexor carpi radialis (FCR). Two-way repeated-measures ANOVA found an interaction effect (p = 0.020) for SmO2 reactivity in the VL. Post hoc analysis found greater reactive hyperemia postexercise in the VL for the BFR condition (p < 0.001) but not the TRE condition (p ≥ 0.05). There were no time, condition, or interaction effects (all p > 0.05) for the same analysis in the FCR. This analysis suggests that BFR, but not TRE, lead to acutely improved microvasculature function. Moreover, it suggests that the effects of BFR resistance exercise are local to the exercised or occluded limb and not systemic.
AB - Perlet, MR, Hosick, PA, Licameli, N, and Matthews, EL. Microvascular reactivity is greater following blood flow restriction resistance exercise compared with traditional resistance exercise. J Strength Cond Res XX(X): 000-000, 2024 - Chronic blood flow restriction (BFR) resistance exercise can improve muscular strength, hypertrophy, and microvasculature function, but the acute microvascular effects are unknown. We aimed to test the effects of acute BFR resistance exercise on postexercise microvascular reactivity in an exercising muscle and nonexercising muscle compared with traditional resistance exercise (TRE). Twenty-five adults (men = 14, women = 11, age: 22 ± 3 years, body mass: 71.69 ± 14.49 kg, height: 170 ± 10 cm) completed barbell back squat 1-repetition maximum (1RM) testing followed by 2 randomized and counterbalanced resistance exercise visits separated by ≥48 hours. The 2 visits involved either BFR (4 sets of 30-15-15-15 repetitions at 30% 1RM, with 60-second rest intervals) or TRE (4 sets of 10 repetitions at 70% 1RM, 60-second rest intervals). During each exercise visit, a pre- and postbarbell back squat vascular occlusion test was performed using near-infrared spectroscopy to measure skeletal muscle oxygen (SmO2) in the vastus lateralis (VL) and flexor carpi radialis (FCR). Two-way repeated-measures ANOVA found an interaction effect (p = 0.020) for SmO2 reactivity in the VL. Post hoc analysis found greater reactive hyperemia postexercise in the VL for the BFR condition (p < 0.001) but not the TRE condition (p ≥ 0.05). There were no time, condition, or interaction effects (all p > 0.05) for the same analysis in the FCR. This analysis suggests that BFR, but not TRE, lead to acutely improved microvasculature function. Moreover, it suggests that the effects of BFR resistance exercise are local to the exercised or occluded limb and not systemic.
KW - barbell back squat
KW - near-infrared spectroscopy
KW - reactive hyperemia
KW - sex differences
KW - skeletal muscle oxygen saturation
KW - sport science
KW - vascular occlusion test
UR - http://www.scopus.com/inward/record.url?scp=85200105074&partnerID=8YFLogxK
U2 - 10.1519/JSC.0000000000004873
DO - 10.1519/JSC.0000000000004873
M3 - Article
AN - SCOPUS:85200105074
SN - 1064-8011
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
ER -