Mining Satellite Imagery for Offshore Wind Energy

Cristian C.Noriega Monsalve, Aparna S. Varde

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This work mines big data in Sentinel-1 satellite images to unveil geographical patterns in offshore wind energy. We leverage unsupervised machine learning to extract insights from a 44GB open access dataset for decision support in wind farm orientations to guide stakeholders. It has broader impacts of overcoming climate change by enhancing renewable energy.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE International Conference on Big Data, BigData 2024
EditorsWei Ding, Chang-Tien Lu, Fusheng Wang, Liping Di, Kesheng Wu, Jun Huan, Raghu Nambiar, Jundong Li, Filip Ilievski, Ricardo Baeza-Yates, Xiaohua Hu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8778-8780
Number of pages3
ISBN (Electronic)9798350362480
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Big Data, BigData 2024 - Washington, United States
Duration: 15 Dec 202418 Dec 2024

Publication series

NameProceedings - 2024 IEEE International Conference on Big Data, BigData 2024

Conference

Conference2024 IEEE International Conference on Big Data, BigData 2024
Country/TerritoryUnited States
CityWashington
Period15/12/2418/12/24

Keywords

  • Climate Change
  • Clustering
  • Geospatial Big Data
  • Image Mining
  • Ocean Wind Field
  • Radar
  • Renewable Energy
  • Satellite Data
  • Unsupervised Learning
  • World Geodetic System

Fingerprint

Dive into the research topics of 'Mining Satellite Imagery for Offshore Wind Energy'. Together they form a unique fingerprint.

Cite this