TY - JOUR
T1 - Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function
AU - Power, Kade M.
AU - Akella, Jyothi S.
AU - Gu, Amanda
AU - Walsh, Jonathon D.
AU - Bellotti, Sebastian
AU - Morash, Margaret
AU - Zhang, Winnie
AU - Ramadan, Yasmin H.
AU - Ross, Nicole
AU - Golden, Andy
AU - Smith, Harold E.
AU - Barr, Maureen M.
AU - O’Hagan, Robert
N1 - Publisher Copyright:
© 2020 Public Library of Science. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10/16
Y1 - 2020/10/16
N2 - Ciliary microtubules are subject to post-translational modifications that act as a “Tubulin Code” to regulate motor traffic, binding proteins and stability. In humans, loss of CCP1, a cytosolic carboxypeptidase and tubulin deglutamylating enzyme, causes infantile-onset neurodegeneration. In C. elegans, mutations in ccpp-1, the homolog of CCP1, result in progressive degeneration of neuronal cilia and loss of neuronal function. To identify genes that regulate microtubule glutamylation and ciliary integrity, we performed a forward genetic screen for suppressors of ciliary degeneration in ccpp-1 mutants. We isolated the ttll-5 (my38) suppressor, a mutation in a tubulin tyrosine ligase-like glutamylase gene. We show that mutation in ttll-4, ttll-5, or ttll-11 gene suppressed the hyperglutamylation-induced loss of ciliary dye filling and kinesin-2 mislocalization in ccpp-1 cilia. We also identified the nekl-4 (my31) suppressor, an allele affecting the NIMA (Never in Mitosis A)-related kinase NEKL-4/NEK10. In humans, NEK10 mutation causes bronchiectasis, an airway and mucociliary transport disorder caused by defective motile cilia. C. elegans NEKL-4 localizes to the ciliary base but does not localize to cilia, suggesting an indirect role in ciliary processes. This work defines a pathway in which glutamylation, a component of the Tubulin Code, is written by TTLL-4, TTLL-5, and TTLL-11; is erased by CCPP-1; is read by ciliary kinesins; and its downstream effects are modulated by NEKL-4 activity. Identification of regulators of microtubule glutamylation in diverse cellular contexts is important to the development of effective therapies for disorders characterized by changes in microtubule glutamylation. By identifying C. elegans genes important for neuronal and ciliary stability, our work may inform research into the roles of the tubulin code in human ciliopathies and neurodegenerative diseases.
AB - Ciliary microtubules are subject to post-translational modifications that act as a “Tubulin Code” to regulate motor traffic, binding proteins and stability. In humans, loss of CCP1, a cytosolic carboxypeptidase and tubulin deglutamylating enzyme, causes infantile-onset neurodegeneration. In C. elegans, mutations in ccpp-1, the homolog of CCP1, result in progressive degeneration of neuronal cilia and loss of neuronal function. To identify genes that regulate microtubule glutamylation and ciliary integrity, we performed a forward genetic screen for suppressors of ciliary degeneration in ccpp-1 mutants. We isolated the ttll-5 (my38) suppressor, a mutation in a tubulin tyrosine ligase-like glutamylase gene. We show that mutation in ttll-4, ttll-5, or ttll-11 gene suppressed the hyperglutamylation-induced loss of ciliary dye filling and kinesin-2 mislocalization in ccpp-1 cilia. We also identified the nekl-4 (my31) suppressor, an allele affecting the NIMA (Never in Mitosis A)-related kinase NEKL-4/NEK10. In humans, NEK10 mutation causes bronchiectasis, an airway and mucociliary transport disorder caused by defective motile cilia. C. elegans NEKL-4 localizes to the ciliary base but does not localize to cilia, suggesting an indirect role in ciliary processes. This work defines a pathway in which glutamylation, a component of the Tubulin Code, is written by TTLL-4, TTLL-5, and TTLL-11; is erased by CCPP-1; is read by ciliary kinesins; and its downstream effects are modulated by NEKL-4 activity. Identification of regulators of microtubule glutamylation in diverse cellular contexts is important to the development of effective therapies for disorders characterized by changes in microtubule glutamylation. By identifying C. elegans genes important for neuronal and ciliary stability, our work may inform research into the roles of the tubulin code in human ciliopathies and neurodegenerative diseases.
UR - http://www.scopus.com/inward/record.url?scp=85092898621&partnerID=8YFLogxK
U2 - 10.1371/journal.pgen.1009052
DO - 10.1371/journal.pgen.1009052
M3 - Article
C2 - 33064774
AN - SCOPUS:85092898621
SN - 1553-7390
VL - 16
JO - PLoS Genetics
JF - PLoS Genetics
IS - 10
M1 - e1009052
ER -