TY - JOUR
T1 - New fat free mass - Fat mass model for use in physiological energy balance equations
AU - Thomas, Diana
AU - Das, Sai
AU - Levine, James A.
AU - Martin, Corby K.
AU - Mayer, Laurel
AU - McDougall, Andrew
AU - Strauss, Boyd J.
AU - Heymsfield, Steven B.
PY - 2010
Y1 - 2010
N2 - Background: The Forbes equation relating fat-free mass (FFM) to fat mass (FM) has been used to predict longitudinal changes in FFM during weight change but has important limitations when paired with a one dimensional energy balance differential equation. Direct use of the Forbes model within a one dimensional energy balance differential equation requires calibration of a translate parameter for the specific population under study. Comparison of translates to a representative sample of the US population indicate that this parameter is a reflection of age, height, race and gender effects. Results: We developed a class of fourth order polynomial equations relating FFM to FM that consider age, height, race and gender as covariates eliminating the need to calibrate a parameter to baseline subject data while providing meaningful individual estimates of FFM. Moreover, the intercepts of these polynomial equations are nonnegative and are consistent with observations of very low FM measured during a severe Somali famine. The models preserve the predictive power of the Forbes model for changes in body composition when compared to results from several longitudinal weight change studies. Conclusions: The newly developed FFM-FM models provide new opportunities to compare individuals undergoing weight change to subjects in energy balance, analyze body composition for individual parameters, and predict body composition during weight change when pairing with energy balance differential equations.
AB - Background: The Forbes equation relating fat-free mass (FFM) to fat mass (FM) has been used to predict longitudinal changes in FFM during weight change but has important limitations when paired with a one dimensional energy balance differential equation. Direct use of the Forbes model within a one dimensional energy balance differential equation requires calibration of a translate parameter for the specific population under study. Comparison of translates to a representative sample of the US population indicate that this parameter is a reflection of age, height, race and gender effects. Results: We developed a class of fourth order polynomial equations relating FFM to FM that consider age, height, race and gender as covariates eliminating the need to calibrate a parameter to baseline subject data while providing meaningful individual estimates of FFM. Moreover, the intercepts of these polynomial equations are nonnegative and are consistent with observations of very low FM measured during a severe Somali famine. The models preserve the predictive power of the Forbes model for changes in body composition when compared to results from several longitudinal weight change studies. Conclusions: The newly developed FFM-FM models provide new opportunities to compare individuals undergoing weight change to subjects in energy balance, analyze body composition for individual parameters, and predict body composition during weight change when pairing with energy balance differential equations.
UR - http://www.scopus.com/inward/record.url?scp=79958701994&partnerID=8YFLogxK
U2 - 10.1186/1743-7075-7-39
DO - 10.1186/1743-7075-7-39
M3 - Article
C2 - 20459692
AN - SCOPUS:79958701994
SN - 1743-7075
VL - 7
JO - Nutrition and Metabolism
JF - Nutrition and Metabolism
M1 - 39
ER -