New fat free mass - Fat mass model for use in physiological energy balance equations

Diana Thomas, Sai Das, James A. Levine, Corby K. Martin, Laurel Mayer, Andrew McDougall, Boyd J. Strauss, Steven B. Heymsfield

    Research output: Contribution to journalArticlepeer-review

    41 Scopus citations

    Abstract

    Background: The Forbes equation relating fat-free mass (FFM) to fat mass (FM) has been used to predict longitudinal changes in FFM during weight change but has important limitations when paired with a one dimensional energy balance differential equation. Direct use of the Forbes model within a one dimensional energy balance differential equation requires calibration of a translate parameter for the specific population under study. Comparison of translates to a representative sample of the US population indicate that this parameter is a reflection of age, height, race and gender effects. Results: We developed a class of fourth order polynomial equations relating FFM to FM that consider age, height, race and gender as covariates eliminating the need to calibrate a parameter to baseline subject data while providing meaningful individual estimates of FFM. Moreover, the intercepts of these polynomial equations are nonnegative and are consistent with observations of very low FM measured during a severe Somali famine. The models preserve the predictive power of the Forbes model for changes in body composition when compared to results from several longitudinal weight change studies. Conclusions: The newly developed FFM-FM models provide new opportunities to compare individuals undergoing weight change to subjects in energy balance, analyze body composition for individual parameters, and predict body composition during weight change when pairing with energy balance differential equations.

    Original languageEnglish
    Article number39
    JournalNutrition and Metabolism
    Volume7
    DOIs
    StatePublished - 2010

    Fingerprint

    Dive into the research topics of 'New fat free mass - Fat mass model for use in physiological energy balance equations'. Together they form a unique fingerprint.

    Cite this