Newly discovered submicron-scale weathering in quartz: Geographical implications

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

Quartz is regarded as one of the minerals most resistant to chemical weathering. Nevertheless, quartz does weather under certain conditions. Several geographic phenomena, including downstream sorting of fluvial sediments, the distribution of loess, and the absence of silica in tropical soils, may be directly or indirectly related to quartz weathering. Weathering may impact the use of quartz in geographic applications of geochronology and paleoenvi- ronmental analysis. This paper defines the molecular-scale mechanisms of chemical weathering in quartz, and presents the first examination of quartz weathering in the terrestrial environment using high resolution transmission electron microscopy (HRTEM). HRTEM images illustrate crystalline disintegration, or amorphization, of exterior surfaces and internal fractures of quartz sand grains collected from tills of the Eastern Sierra Nevada, California. Of several alternative mechanisms, in situ hydration of the crystalline matrix is the most plausible for quartz amorphization. Scale and mineral structure appear to be prominent factors in quartz amorphization; microenvironment and weathering rates may also be significant, but data are insufficient to make more precise generalizations.

Original languageEnglish
Pages (from-to)375-387
Number of pages13
JournalProfessional Geographer
Volume47
Issue number4
DOIs
StatePublished - Nov 1995

Keywords

  • Electron microscopy
  • Paleoenvironmental analysis
  • Quartz
  • Soils
  • Weathering

Fingerprint Dive into the research topics of 'Newly discovered submicron-scale weathering in quartz: Geographical implications'. Together they form a unique fingerprint.

  • Cite this