Noise, bifurcations, and modeling of interacting particle systems

Luis Mier-Y-Teran-Romero, Eric Forgoston, Ira B. Schwartz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete bifurcation unfolds in the presence of communication delay and coupling amplitude. Relative to the center of mass, the patterns can then be described as transitions between translation, rotation about a stationary point, or a rotating swarm, where the center of mass undergoes a Hopf bifurcation from steady state to a limit cycle. Examples of some of the stochastic patterns will be given for large numbers of particles.

Original languageEnglish
Title of host publicationIROS'11 - 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
Subtitle of host publicationCelebrating 50 Years of Robotics
Pages3905-3910
Number of pages6
DOIs
StatePublished - 29 Dec 2011
Event2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11 - San Francisco, CA, United States
Duration: 25 Sep 201130 Sep 2011

Publication series

NameIEEE International Conference on Intelligent Robots and Systems

Other

Other2011 IEEE/RSJ International Conference on Intelligent Robots and Systems: Celebrating 50 Years of Robotics, IROS'11
Country/TerritoryUnited States
CitySan Francisco, CA
Period25/09/1130/09/11

Fingerprint

Dive into the research topics of 'Noise, bifurcations, and modeling of interacting particle systems'. Together they form a unique fingerprint.

Cite this