TY - JOUR
T1 - Non-trivial solutions to certain matrix equations
AU - Li, Aihua
AU - Randall, Duane
PY - 2002/10
Y1 - 2002/10
N2 - The existence of non-trivial solutions X to matrix equations of the form F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) over the real numbers is investigated. Here F and G denote monomials in the (n x n)-matrix X = (xij ) of variables together with (n x n)-matrices A1,A2, ⋯ ,As for s ≥ 1 and n ≥ 2 such that F and G have different total positive degrees in X. An example with s = 1 is given by F(X,A) = X2AX and G(X,A) = AXA where deg(F) = 3 and deg(G) = 1. The Borsuk-Ulam Theorem guarantees that a non-zero matrix X exists satisfying the matrix equation F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) in (n2 - 1) components whenever F and G have different total odd degrees in X. The Lefschetz Fixed Point Theorem guarantees the existence of special orthogonal matrices X satisfying matrix equations F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) whenever deg(F) > deg(G) ≥ 1, A1,A2, ⋯ ,As are in SO(n), and n ≥ 2. Explicit solution matrices X for the equations with s = 1 are constructed. Finally, nonsingular matrices A are presented for which X2AX = AXA admits no non-trivial solutions.
AB - The existence of non-trivial solutions X to matrix equations of the form F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) over the real numbers is investigated. Here F and G denote monomials in the (n x n)-matrix X = (xij ) of variables together with (n x n)-matrices A1,A2, ⋯ ,As for s ≥ 1 and n ≥ 2 such that F and G have different total positive degrees in X. An example with s = 1 is given by F(X,A) = X2AX and G(X,A) = AXA where deg(F) = 3 and deg(G) = 1. The Borsuk-Ulam Theorem guarantees that a non-zero matrix X exists satisfying the matrix equation F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) in (n2 - 1) components whenever F and G have different total odd degrees in X. The Lefschetz Fixed Point Theorem guarantees the existence of special orthogonal matrices X satisfying matrix equations F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) whenever deg(F) > deg(G) ≥ 1, A1,A2, ⋯ ,As are in SO(n), and n ≥ 2. Explicit solution matrices X for the equations with s = 1 are constructed. Finally, nonsingular matrices A are presented for which X2AX = AXA admits no non-trivial solutions.
KW - Matrix equation
KW - Non-trivial solution
KW - Polynomial equation
UR - http://www.scopus.com/inward/record.url?scp=3042596838&partnerID=8YFLogxK
U2 - 10.13001/1081-3810.1091
DO - 10.13001/1081-3810.1091
M3 - Article
AN - SCOPUS:3042596838
SN - 1081-3810
VL - 9
SP - 282
EP - 289
JO - Electronic Journal of Linear Algebra
JF - Electronic Journal of Linear Algebra
ER -