Non-trivial solutions to certain matrix equations

Aihua Li, Duane Randall

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The existence of non-trivial solutions X to matrix equations of the form F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) over the real numbers is investigated. Here F and G denote monomials in the (n x n)-matrix X = (xij ) of variables together with (n x n)-matrices A1,A2, ⋯ ,As for s ≥ 1 and n ≥ 2 such that F and G have different total positive degrees in X. An example with s = 1 is given by F(X,A) = X2AX and G(X,A) = AXA where deg(F) = 3 and deg(G) = 1. The Borsuk-Ulam Theorem guarantees that a non-zero matrix X exists satisfying the matrix equation F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) in (n2 - 1) components whenever F and G have different total odd degrees in X. The Lefschetz Fixed Point Theorem guarantees the existence of special orthogonal matrices X satisfying matrix equations F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) whenever deg(F) > deg(G) ≥ 1, A1,A2, ⋯ ,As are in SO(n), and n ≥ 2. Explicit solution matrices X for the equations with s = 1 are constructed. Finally, nonsingular matrices A are presented for which X2AX = AXA admits no non-trivial solutions.

Original languageEnglish
Pages (from-to)282-289
Number of pages8
JournalElectronic Journal of Linear Algebra
Volume9
StatePublished - 1 Oct 2002

Fingerprint

Nontrivial Solution
Matrix Equation
Borsuk-Ulam Theorem
Orthogonal matrix
Nonsingular or invertible matrix
Explicit Solution
Fixed point theorem
Odd
Denote

Keywords

  • Matrix equation
  • Non-trivial solution
  • Polynomial equation

Cite this

@article{30b1806cfc654c93bb14a0dd5f96c5c1,
title = "Non-trivial solutions to certain matrix equations",
abstract = "The existence of non-trivial solutions X to matrix equations of the form F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) over the real numbers is investigated. Here F and G denote monomials in the (n x n)-matrix X = (xij ) of variables together with (n x n)-matrices A1,A2, ⋯ ,As for s ≥ 1 and n ≥ 2 such that F and G have different total positive degrees in X. An example with s = 1 is given by F(X,A) = X2AX and G(X,A) = AXA where deg(F) = 3 and deg(G) = 1. The Borsuk-Ulam Theorem guarantees that a non-zero matrix X exists satisfying the matrix equation F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) in (n2 - 1) components whenever F and G have different total odd degrees in X. The Lefschetz Fixed Point Theorem guarantees the existence of special orthogonal matrices X satisfying matrix equations F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) whenever deg(F) > deg(G) ≥ 1, A1,A2, ⋯ ,As are in SO(n), and n ≥ 2. Explicit solution matrices X for the equations with s = 1 are constructed. Finally, nonsingular matrices A are presented for which X2AX = AXA admits no non-trivial solutions.",
keywords = "Matrix equation, Non-trivial solution, Polynomial equation",
author = "Aihua Li and Duane Randall",
year = "2002",
month = "10",
day = "1",
language = "English",
volume = "9",
pages = "282--289",
journal = "Electronic Journal of Linear Algebra",
issn = "1081-3810",
publisher = "International Linear Algebra Society",

}

Non-trivial solutions to certain matrix equations. / Li, Aihua; Randall, Duane.

In: Electronic Journal of Linear Algebra, Vol. 9, 01.10.2002, p. 282-289.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Non-trivial solutions to certain matrix equations

AU - Li, Aihua

AU - Randall, Duane

PY - 2002/10/1

Y1 - 2002/10/1

N2 - The existence of non-trivial solutions X to matrix equations of the form F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) over the real numbers is investigated. Here F and G denote monomials in the (n x n)-matrix X = (xij ) of variables together with (n x n)-matrices A1,A2, ⋯ ,As for s ≥ 1 and n ≥ 2 such that F and G have different total positive degrees in X. An example with s = 1 is given by F(X,A) = X2AX and G(X,A) = AXA where deg(F) = 3 and deg(G) = 1. The Borsuk-Ulam Theorem guarantees that a non-zero matrix X exists satisfying the matrix equation F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) in (n2 - 1) components whenever F and G have different total odd degrees in X. The Lefschetz Fixed Point Theorem guarantees the existence of special orthogonal matrices X satisfying matrix equations F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) whenever deg(F) > deg(G) ≥ 1, A1,A2, ⋯ ,As are in SO(n), and n ≥ 2. Explicit solution matrices X for the equations with s = 1 are constructed. Finally, nonsingular matrices A are presented for which X2AX = AXA admits no non-trivial solutions.

AB - The existence of non-trivial solutions X to matrix equations of the form F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) over the real numbers is investigated. Here F and G denote monomials in the (n x n)-matrix X = (xij ) of variables together with (n x n)-matrices A1,A2, ⋯ ,As for s ≥ 1 and n ≥ 2 such that F and G have different total positive degrees in X. An example with s = 1 is given by F(X,A) = X2AX and G(X,A) = AXA where deg(F) = 3 and deg(G) = 1. The Borsuk-Ulam Theorem guarantees that a non-zero matrix X exists satisfying the matrix equation F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) in (n2 - 1) components whenever F and G have different total odd degrees in X. The Lefschetz Fixed Point Theorem guarantees the existence of special orthogonal matrices X satisfying matrix equations F(X,A1,A2, ⋯ ,As) = G(X,A1,A2, ⋯ ,As) whenever deg(F) > deg(G) ≥ 1, A1,A2, ⋯ ,As are in SO(n), and n ≥ 2. Explicit solution matrices X for the equations with s = 1 are constructed. Finally, nonsingular matrices A are presented for which X2AX = AXA admits no non-trivial solutions.

KW - Matrix equation

KW - Non-trivial solution

KW - Polynomial equation

UR - http://www.scopus.com/inward/record.url?scp=3042596838&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:3042596838

VL - 9

SP - 282

EP - 289

JO - Electronic Journal of Linear Algebra

JF - Electronic Journal of Linear Algebra

SN - 1081-3810

ER -