Observations of sand waves, megaripples, and hummocks in the Dutch coastal area and their relation to currents and combined flow conditions

Sandra Passchier, M. G. Kleinhans

Research output: Contribution to journalArticleResearchpeer-review

27 Citations (Scopus)

Abstract

[1] This paper aims to investigate the distribution and stability of large-scale bed forms in response to storm and fair-weather conditions in a shallow marine environment. Multibeam and side-scan sonar data off the Dutch coast (median grain size 0.25-0.35 mm) were collected to monitor sand waves (λ = 100-800 m) and superimposed megaripples (λ = 1-40 m) through multiple storm and fair-weather events. Box cores were used to observe the vertical bed structure and grain size. In the Dutch coastal area, two-dimensional (2-D) megaripples (X = 1-15 m) are the dominant bed forms in current-dominated (>0.4 m/s) tidal flow regimes with oscillatory flows <0.15 m/s. Effects of trapping of fine material under these conditions by tube building Lanice conchilega colonies on bed form development are suspected but need further study. At slightly higher energy conditions, 3-D megaripples (λ = 5-15 m) begin to form on the shoreface. After seasonal storms, at oscillatory flows >0.4 m/s, undulating bed topography of mound-like 3-D bed forms (λ = 20-40 m) is observed. Immediately after storms, these bed forms are covered by smaller 3-D megaripples, which are related to sets of low-angle converging laminae in box cores, interpreted as hummocky cross stratification (HCS). The sand waves form compound bed forms of sets of 2-D and 3-D megaripples. The morphology of the sand waves is a function of the general wind-wave climate of the marine environmental setting, with flat-topped 3-D sand waves occurring in shallow wave-dominated settings and 2-D sand waves occurring in the tide-dominated environment farther offshore.

Original languageEnglish
Article numberF04S15
JournalJournal of Geophysical Research: Earth Surface
Volume110
Issue number4
DOIs
StatePublished - 1 Dec 2005

Fingerprint

sand wave
bedform
grain size
hummocky cross-stratification
oscillating flow
wave climate
sidescan sonar
wind wave
marine environment
tide
coastal area
topography
weather
coast

Cite this

@article{c689ad4985bd4b02af2f06602f2186ab,
title = "Observations of sand waves, megaripples, and hummocks in the Dutch coastal area and their relation to currents and combined flow conditions",
abstract = "[1] This paper aims to investigate the distribution and stability of large-scale bed forms in response to storm and fair-weather conditions in a shallow marine environment. Multibeam and side-scan sonar data off the Dutch coast (median grain size 0.25-0.35 mm) were collected to monitor sand waves (λ = 100-800 m) and superimposed megaripples (λ = 1-40 m) through multiple storm and fair-weather events. Box cores were used to observe the vertical bed structure and grain size. In the Dutch coastal area, two-dimensional (2-D) megaripples (X = 1-15 m) are the dominant bed forms in current-dominated (>0.4 m/s) tidal flow regimes with oscillatory flows <0.15 m/s. Effects of trapping of fine material under these conditions by tube building Lanice conchilega colonies on bed form development are suspected but need further study. At slightly higher energy conditions, 3-D megaripples (λ = 5-15 m) begin to form on the shoreface. After seasonal storms, at oscillatory flows >0.4 m/s, undulating bed topography of mound-like 3-D bed forms (λ = 20-40 m) is observed. Immediately after storms, these bed forms are covered by smaller 3-D megaripples, which are related to sets of low-angle converging laminae in box cores, interpreted as hummocky cross stratification (HCS). The sand waves form compound bed forms of sets of 2-D and 3-D megaripples. The morphology of the sand waves is a function of the general wind-wave climate of the marine environmental setting, with flat-topped 3-D sand waves occurring in shallow wave-dominated settings and 2-D sand waves occurring in the tide-dominated environment farther offshore.",
author = "Sandra Passchier and Kleinhans, {M. G.}",
year = "2005",
month = "12",
day = "1",
doi = "10.1029/2004JF000215",
language = "English",
volume = "110",
journal = "Journal of Geophysical Research: Earth Surface",
issn = "2169-9003",
publisher = "Wiley-Blackwell",
number = "4",

}

Observations of sand waves, megaripples, and hummocks in the Dutch coastal area and their relation to currents and combined flow conditions. / Passchier, Sandra; Kleinhans, M. G.

In: Journal of Geophysical Research: Earth Surface, Vol. 110, No. 4, F04S15, 01.12.2005.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Observations of sand waves, megaripples, and hummocks in the Dutch coastal area and their relation to currents and combined flow conditions

AU - Passchier, Sandra

AU - Kleinhans, M. G.

PY - 2005/12/1

Y1 - 2005/12/1

N2 - [1] This paper aims to investigate the distribution and stability of large-scale bed forms in response to storm and fair-weather conditions in a shallow marine environment. Multibeam and side-scan sonar data off the Dutch coast (median grain size 0.25-0.35 mm) were collected to monitor sand waves (λ = 100-800 m) and superimposed megaripples (λ = 1-40 m) through multiple storm and fair-weather events. Box cores were used to observe the vertical bed structure and grain size. In the Dutch coastal area, two-dimensional (2-D) megaripples (X = 1-15 m) are the dominant bed forms in current-dominated (>0.4 m/s) tidal flow regimes with oscillatory flows <0.15 m/s. Effects of trapping of fine material under these conditions by tube building Lanice conchilega colonies on bed form development are suspected but need further study. At slightly higher energy conditions, 3-D megaripples (λ = 5-15 m) begin to form on the shoreface. After seasonal storms, at oscillatory flows >0.4 m/s, undulating bed topography of mound-like 3-D bed forms (λ = 20-40 m) is observed. Immediately after storms, these bed forms are covered by smaller 3-D megaripples, which are related to sets of low-angle converging laminae in box cores, interpreted as hummocky cross stratification (HCS). The sand waves form compound bed forms of sets of 2-D and 3-D megaripples. The morphology of the sand waves is a function of the general wind-wave climate of the marine environmental setting, with flat-topped 3-D sand waves occurring in shallow wave-dominated settings and 2-D sand waves occurring in the tide-dominated environment farther offshore.

AB - [1] This paper aims to investigate the distribution and stability of large-scale bed forms in response to storm and fair-weather conditions in a shallow marine environment. Multibeam and side-scan sonar data off the Dutch coast (median grain size 0.25-0.35 mm) were collected to monitor sand waves (λ = 100-800 m) and superimposed megaripples (λ = 1-40 m) through multiple storm and fair-weather events. Box cores were used to observe the vertical bed structure and grain size. In the Dutch coastal area, two-dimensional (2-D) megaripples (X = 1-15 m) are the dominant bed forms in current-dominated (>0.4 m/s) tidal flow regimes with oscillatory flows <0.15 m/s. Effects of trapping of fine material under these conditions by tube building Lanice conchilega colonies on bed form development are suspected but need further study. At slightly higher energy conditions, 3-D megaripples (λ = 5-15 m) begin to form on the shoreface. After seasonal storms, at oscillatory flows >0.4 m/s, undulating bed topography of mound-like 3-D bed forms (λ = 20-40 m) is observed. Immediately after storms, these bed forms are covered by smaller 3-D megaripples, which are related to sets of low-angle converging laminae in box cores, interpreted as hummocky cross stratification (HCS). The sand waves form compound bed forms of sets of 2-D and 3-D megaripples. The morphology of the sand waves is a function of the general wind-wave climate of the marine environmental setting, with flat-topped 3-D sand waves occurring in shallow wave-dominated settings and 2-D sand waves occurring in the tide-dominated environment farther offshore.

UR - http://www.scopus.com/inward/record.url?scp=36448958491&partnerID=8YFLogxK

U2 - 10.1029/2004JF000215

DO - 10.1029/2004JF000215

M3 - Article

VL - 110

JO - Journal of Geophysical Research: Earth Surface

JF - Journal of Geophysical Research: Earth Surface

SN - 2169-9003

IS - 4

M1 - F04S15

ER -